Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts
Abstract
RNA is a critical component of chromatin in eukaryotes, both as a product of transcription, and as an essential constituent of ribonucleoprotein complexes that regulate both local and global chromatin states. Here we present a proximity ligation and sequencing method called Chromatin-Associated RNA sequencing (ChAR-seq) that maps all RNA-to-DNA contacts across the genome. Using Drosophila cells we show that ChAR-seq provides unbiased, de novo identification of targets of chromatin-bound RNAs including nascent transcripts, chromosome-specific dosage compensation ncRNAs, and genome-wide trans-associated RNAs involved in co-transcriptional RNA processing.
Data availability
All sequence data has been deposited in GEO under accession number GSE97131The software analysis pipeline is available at https://gitlab.com/charseq/flypipe
-
Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contactsPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE97131).
-
Domain ChIRP reveals the modularity of long noncoding RNA architecture, function, and target genesPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE53020).
-
High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in DrosophilaPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE58821).
-
GRID-seq reveals the global RNA-chromatin interactomePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE82312).
Article and author information
Author details
Funding
National Institutes of Health (Stanford Center for Systems Biology (NIH P50 GM107615) Seed Grant)
- Jason C Bell
- David Jukam
- Viviana I Risca
- Whitney L Johnson
Howard Hughes Medical Institute (HHMI-Simons Faculty Scholar Award)
- Jan M Skotheim
National Institutes of Health (P50HG00773501)
- William James Greenleaf
National Institutes of Health (R01GM106005)
- Aaron F Straight
Stanford University School of Medicine (Dean's Fellowship)
- Jason C Bell
National Institutes of Health (R01HG009909)
- William James Greenleaf
- Aaron F Straight
National Institutes of Health (R21HG007726)
- William James Greenleaf
National Institutes of Health (NIH Ruth Kirchstein National Research Service Award (F32GM116338))
- Jason C Bell
National Institutes of Health (NIH Ruth Kirchstein National Research Service Award (F32GM108295 ))
- David Jukam
Stanford University (Walter V. and Idun Berry Fellowship)
- Viviana I Risca
National Institutes of Health (Stanford Genetics Training Program (5T32HG000044-19))
- Nicole A Teran
National Institutes of Health (Molecular Pharmacology Training Grant (NIH T32-GM113854-02))
- Owen K Smith
National Institutes of Health (NIH T32 Training Fellowship (GM007276))
- Whitney L Johnson
National Science Foundation (DGE-114747)
- Whitney L Johnson
National Institutes of Health (RO1 HD085135)
- Jan M Skotheim
- Aaron F Straight
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Bell et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 17,456
- views
-
- 2,321
- downloads
-
- 132
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Chromosomes and Gene Expression
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.
-
- Biochemistry and Chemical Biology
- Chromosomes and Gene Expression
Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.