Magneto-thermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice

  1. Rahul Munshi
  2. Shahnaz M Qadri
  3. Qian Zhang
  4. Idoia Castellanos Rubio
  5. Pablo del Pino
  6. Arnd Pralle  Is a corresponding author
  1. University at Buffalo, United States
  2. Philipps University Marburg, Germany
  3. Universidad de Santiago de Compostela, Spain

Abstract

Establishing how neurocircuit activation causes particular behaviors requires modulating the activity of specific neurons. Here, we demonstrate that magnetothermal genetic stimulation provides tetherless deep brain activation sufficient to evoke motor behavior in awake mice. The approach uses alternating magnetic fields to heat superparamagnetic nanoparticles on the neuronal membrane. Neurons heat-sensitized by expressing TRPV1 are activated with magnetic field application. Magnetothermal genetic stimulation in the motor cortex evoked ambulation, deep brain stimulation in the striatum caused rotation around the body-axis, and stimulation near the ridge between ventral and dorsal striatum caused freezing-of-gait. The duration of the behavior correlated tightly with field application. This approach provides genetically and spatially targetable, repeatable and temporarily precise activation of deep-brain circuits without need for surgical implantation of any device.

Article and author information

Author details

  1. Rahul Munshi

    Department of Physics, University at Buffalo, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shahnaz M Qadri

    Department of Physics, University at Buffalo, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qian Zhang

    Department of Physics, Philipps University Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Idoia Castellanos Rubio

    Department of Physics, University at Buffalo, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pablo del Pino

    CIQUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1318-6839
  6. Arnd Pralle

    Department of Physics, University at Buffalo, Buffalo, United States
    For correspondence
    apralle@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6079-109X

Funding

National Institute of Mental Health (1R01MH094730)

  • Arnd Pralle

Human Frontier Science Program (RGP0052/2012)

  • Arnd Pralle

National Institute of Mental Health (1R01MH111872)

  • Arnd Pralle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karel Svoboda, Janelia Research Campus, Howard Hughes Medical Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PHY01051Y and PHY02103N) of the University at Buffalo. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University at Buffalo. All surgery was performed andKetamine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: March 22, 2017
  2. Accepted: August 14, 2017
  3. Accepted Manuscript published: August 15, 2017 (version 1)
  4. Version of Record published: September 18, 2017 (version 2)
  5. Version of Record updated: October 5, 2017 (version 3)

Copyright

© 2017, Munshi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 18,352
    views
  • 2,055
    downloads
  • 107
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rahul Munshi
  2. Shahnaz M Qadri
  3. Qian Zhang
  4. Idoia Castellanos Rubio
  5. Pablo del Pino
  6. Arnd Pralle
(2017)
Magneto-thermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice
eLife 6:e27069.
https://doi.org/10.7554/eLife.27069

Share this article

https://doi.org/10.7554/eLife.27069

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.