Magneto-thermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice

  1. Rahul Munshi
  2. Shahnaz M Qadri
  3. Qian Zhang
  4. Idoia Castellanos Rubio
  5. Pablo del Pino
  6. Arnd Pralle  Is a corresponding author
  1. University at Buffalo, United States
  2. Philipps University Marburg, Germany
  3. Universidad de Santiago de Compostela, Spain

Abstract

Establishing how neurocircuit activation causes particular behaviors requires modulating the activity of specific neurons. Here, we demonstrate that magnetothermal genetic stimulation provides tetherless deep brain activation sufficient to evoke motor behavior in awake mice. The approach uses alternating magnetic fields to heat superparamagnetic nanoparticles on the neuronal membrane. Neurons heat-sensitized by expressing TRPV1 are activated with magnetic field application. Magnetothermal genetic stimulation in the motor cortex evoked ambulation, deep brain stimulation in the striatum caused rotation around the body-axis, and stimulation near the ridge between ventral and dorsal striatum caused freezing-of-gait. The duration of the behavior correlated tightly with field application. This approach provides genetically and spatially targetable, repeatable and temporarily precise activation of deep-brain circuits without need for surgical implantation of any device.

Article and author information

Author details

  1. Rahul Munshi

    Department of Physics, University at Buffalo, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shahnaz M Qadri

    Department of Physics, University at Buffalo, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qian Zhang

    Department of Physics, Philipps University Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Idoia Castellanos Rubio

    Department of Physics, University at Buffalo, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pablo del Pino

    CIQUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1318-6839
  6. Arnd Pralle

    Department of Physics, University at Buffalo, Buffalo, United States
    For correspondence
    apralle@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6079-109X

Funding

National Institute of Mental Health (1R01MH094730)

  • Arnd Pralle

Human Frontier Science Program (RGP0052/2012)

  • Arnd Pralle

National Institute of Mental Health (1R01MH111872)

  • Arnd Pralle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karel Svoboda, Janelia Research Campus, Howard Hughes Medical Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PHY01051Y and PHY02103N) of the University at Buffalo. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University at Buffalo. All surgery was performed andKetamine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: March 22, 2017
  2. Accepted: August 14, 2017
  3. Accepted Manuscript published: August 15, 2017 (version 1)
  4. Version of Record published: September 18, 2017 (version 2)
  5. Version of Record updated: October 5, 2017 (version 3)

Copyright

© 2017, Munshi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 18,361
    views
  • 2,057
    downloads
  • 117
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rahul Munshi
  2. Shahnaz M Qadri
  3. Qian Zhang
  4. Idoia Castellanos Rubio
  5. Pablo del Pino
  6. Arnd Pralle
(2017)
Magneto-thermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice
eLife 6:e27069.
https://doi.org/10.7554/eLife.27069

Share this article

https://doi.org/10.7554/eLife.27069

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.