Structure analyses reveal a regulated oligomerization mechanism of the PlexinD1/GIPC/myosin VI complex

  1. Guijun Shang
  2. Chad A Brautigam
  3. Rui Chen
  4. Defen Lu
  5. Jesús Torres-Vázquez
  6. Xuewu Zhang  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. New York University Langone Medical Center, United States

Abstract

The GIPC family adaptor proteins mediate endocytosis by tethering cargo proteins to the myosin VI motor. The structural mechanisms for the GIPC/cargo and GIPC/myosin VI interactions remained unclear. PlexinD1, a transmembrane receptor that regulates neuronal and cardiovascular development, is a cargo of GIPCs. GIPC-mediated endocytic trafficking regulates PlexinD1 signaling. Here we unravel the mechanisms of the interactions among PlexinD1, GIPCs and myosin VI by a series of crystal structures of these proteins in apo or bound states. GIPC1 forms a domain-swapped dimer in an autoinhibited conformation that hinders binding of both PlexinD1 and myosin VI. PlexinD1 binding to GIPC1 releases the autoinhibition, promoting its interaction with myosin VI. GIPCs and myosin VI interact through two distinct interfaces and form an open-ended alternating array. Our data support that this alternating array underlies the oligomerization of the GIPC/Myosin VI complexes in solution and cells.

Data availability

The following data sets were generated
    1. Shang G
    2. Zhang X
    (2017) Structure of apo-PlexinD1
    Publicly available at the RCSB Protein Data Bank (accession no: 5V6R).
    1. Shang G
    2. Zhang X
    (2017) Structure of apo-GIPC1
    Publicly available at the RCSB Protein Data Bank (accession no: 5V6B).
    1. Shang G
    2. Zhang X
    (2017) Structure of the PlexinD1/GIPC1 complex
    Publicly available at the RCSB Protein Data Bank (accession no: 5V6T).
    1. Shang G
    2. Zhang X
    (2017) Structure of the GIPC1-GH2/Myosin VI-HCBD complex
    Publicly available at the RCSB Protein Data Bank (accession no: 5V6E).
    1. Shang G
    2. Zhang X
    (2017) Structure of the GIPC2-GH2/Myosin VI-HCBD complex
    Publicly available at the RCSB Protein Data Bank (accession no: 5V6H).

Article and author information

Author details

  1. Guijun Shang

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chad A Brautigam

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rui Chen

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Defen Lu

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jesús Torres-Vázquez

    Department of Cell Biology, New York University Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xuewu Zhang

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    xuewu.zhang@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3634-6711

Funding

National Institutes of Health (GM088197)

  • Guijun Shang
  • Rui Chen
  • Xuewu Zhang

Welch Foundation (I-1702)

  • Guijun Shang
  • Rui Chen
  • Xuewu Zhang

National Institutes of Health (R01HL133687)

  • Jesús Torres-Vázquez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Shang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,683
    views
  • 447
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guijun Shang
  2. Chad A Brautigam
  3. Rui Chen
  4. Defen Lu
  5. Jesús Torres-Vázquez
  6. Xuewu Zhang
(2017)
Structure analyses reveal a regulated oligomerization mechanism of the PlexinD1/GIPC/myosin VI complex
eLife 6:e27322.
https://doi.org/10.7554/eLife.27322

Share this article

https://doi.org/10.7554/eLife.27322

Further reading

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.