Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty

  1. Alexandra Stolyarova  Is a corresponding author
  2. Alicia Izquierdo  Is a corresponding author
  1. University of California, Los Angeles, United States

Abstract

We make choices based on the values of expected outcomes, informed by previous experience in similar settings. When the outcomes of our decisions consistently violate expectations, new learning is needed to maximize rewards. Yet not every surprising event indicates a meaningful change in the environment. Even when conditions are stable overall, outcomes of a single experience can still be unpredictable due to small fluctuations (i.e., expected uncertainty) in reward or costs. In the present work, we investigate causal contributions of the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) in rats to learning under expected outcome uncertainty in a novel delay-based task that incorporates both predictable fluctuations and directional shifts in outcome values. We demonstrate that OFC is required to accurately represent the distribution of wait times to stabilize choice preferences despite trial-by-trial fluctuations in outcomes, whereas BLA is necessary for the facilitation of learning in response to surprising events.

Article and author information

Author details

  1. Alexandra Stolyarova

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    astolyarova@psych.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4397-4895
  2. Alicia Izquierdo

    Departments of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    aizquie@psych.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9897-2091

Funding

UCLA's Division of Life Sciences Recruitment and Retention fund

  • Alicia Izquierdo

Opportunity Fund

  • Alicia Izquierdo

Academic Senate Grant

  • Alicia Izquierdo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Research protocols (#2013-094-13A) were approved by the Chancellor's Animal Research Committee at the University of California, Los Angeles. All surgeries were performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Stolyarova & Izquierdo

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,533
    views
  • 671
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandra Stolyarova
  2. Alicia Izquierdo
(2017)
Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty
eLife 6:e27483.
https://doi.org/10.7554/eLife.27483

Share this article

https://doi.org/10.7554/eLife.27483

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.