1. Neuroscience
Download icon

Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty

  1. Alexandra Stolyarova  Is a corresponding author
  2. Alicia Izquierdo  Is a corresponding author
  1. University of California, Los Angeles, United States
Research Article
  • Cited 17
  • Views 6,013
  • Annotations
Cite this article as: eLife 2017;6:e27483 doi: 10.7554/eLife.27483

Abstract

We make choices based on the values of expected outcomes, informed by previous experience in similar settings. When the outcomes of our decisions consistently violate expectations, new learning is needed to maximize rewards. Yet not every surprising event indicates a meaningful change in the environment. Even when conditions are stable overall, outcomes of a single experience can still be unpredictable due to small fluctuations (i.e., expected uncertainty) in reward or costs. In the present work, we investigate causal contributions of the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) in rats to learning under expected outcome uncertainty in a novel delay-based task that incorporates both predictable fluctuations and directional shifts in outcome values. We demonstrate that OFC is required to accurately represent the distribution of wait times to stabilize choice preferences despite trial-by-trial fluctuations in outcomes, whereas BLA is necessary for the facilitation of learning in response to surprising events.

Article and author information

Author details

  1. Alexandra Stolyarova

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    astolyarova@psych.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4397-4895
  2. Alicia Izquierdo

    Departments of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    aizquie@psych.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9897-2091

Funding

UCLA's Division of Life Sciences Recruitment and Retention fund

  • Alicia Izquierdo

Opportunity Fund

  • Alicia Izquierdo

Academic Senate Grant

  • Alicia Izquierdo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Research protocols (#2013-094-13A) were approved by the Chancellor's Animal Research Committee at the University of California, Los Angeles. All surgeries were performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institutes of Health, United States

Publication history

  1. Received: April 5, 2017
  2. Accepted: July 5, 2017
  3. Accepted Manuscript published: July 6, 2017 (version 1)
  4. Version of Record published: July 28, 2017 (version 2)

Copyright

© 2017, Stolyarova & Izquierdo

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,013
    Page views
  • 614
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Lorenz Deserno et al.
    Research Article Updated

    Dopamine is implicated in representing model-free (MF) reward prediction errors a as well as influencing model-based (MB) credit assignment and choice. Putative cooperative interactions between MB and MF systems include a guidance of MF credit assignment by MB inference. Here, we used a double-blind, placebo-controlled, within-subjects design to test an hypothesis that enhancing dopamine levels boosts the guidance of MF credit assignment by MB inference. In line with this, we found that levodopa enhanced guidance of MF credit assignment by MB inference, without impacting MF and MB influences directly. This drug effect correlated negatively with a dopamine-dependent change in purely MB credit assignment, possibly reflecting a trade-off between these two MB components of behavioural control. Our findings of a dopamine boost in MB inference guidance of MF learning highlight a novel DA influence on MB-MF cooperative interactions.

    1. Developmental Biology
    2. Neuroscience
    Qiuling Li et al.
    Research Article Updated

    Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here, we show that insomniac (inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body (MB), a center for sensory integration, associative learning, and sleep regulation. In inc mutants, MB neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.