Abstract

Dopamine neurons in the ventral tegmental area use glutamate as a cotransmitter. To elucidate the behavioral role of the cotransmission, we targeted the glutamate-recycling enzyme glutaminase (gene Gls1). In mice with a dopamine transporter (Slc6a3)-driven conditional heterozygous (cHET) reduction of Gls1 in their dopamine neurons, dopamine neuron survival and transmission were unaffected, while glutamate cotransmission at phasic firing frequencies was reduced, enabling focusing the cotransmission. The mice showed normal emotional and motor behaviors, and an unaffected response to acute amphetamine. Strikingly, amphetamine sensitization was reduced and latent inhibition potentiated. These behavioral effects, also seen in global GLS1 HETs with a schizophrenia resilience phenotype, were not seen in mice with an Emx1-driven forebrain reduction affecting most brain glutamatergic neurons. Thus, a reduction in dopamine neuron glutamate cotransmission appears to mediate significant components of the GLS1 HET schizophrenia resilience phenotype, and glutamate cotransmission appears to be important in attribution of motivational salience.

Article and author information

Author details

  1. Susana Mingote

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    mingote@nyspi.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Nao Chuhma

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Abigail Kalmbach

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gretchen M Thomsen

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yvonne Wang

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andra Mihali

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Caroline E Sferrazza

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5861-111X
  8. Ilana Zucker-Scharff

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anna-Claire Siena

    Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Martha G Welch

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. José Lizardi-Ortiz

    Department of Neurology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David Sulzer

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7632-0439
  13. Holly Moore

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Inna Gaisler-Salomon

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Stephen Rayport

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    sgr1@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9755-7486

Funding

National Institute on Drug Abuse (MH 087758)

  • Stephen Rayport

National Institute on Drug Abuse (DA017978)

  • Stephen Rayport

NARSAD (Young Investigator Award)

  • Susana Mingote

National Institute of Mental Health (MH086404)

  • Holly Moore
  • Stephen Rayport

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, under protocols approved by the Institutional Animal Care and Use Committees of Columbia University (# AC-AAAB2862) and New York State Psychiatric Institute (# 1249). All surgery was performed under ketamine + xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Mingote et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,857
    views
  • 713
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susana Mingote
  2. Nao Chuhma
  3. Abigail Kalmbach
  4. Gretchen M Thomsen
  5. Yvonne Wang
  6. Andra Mihali
  7. Caroline E Sferrazza
  8. Ilana Zucker-Scharff
  9. Anna-Claire Siena
  10. Martha G Welch
  11. José Lizardi-Ortiz
  12. David Sulzer
  13. Holly Moore
  14. Inna Gaisler-Salomon
  15. Stephen Rayport
(2017)
Dopamine neuron dependent behaviorsmediated by glutamate cotransmission
eLife 6:e27566.
https://doi.org/10.7554/eLife.27566

Share this article

https://doi.org/10.7554/eLife.27566

Further reading

    1. Neuroscience
    Kaspar E Vogt, Ashwinikumar Kulkarni ... Robert W Greene
    Research Article

    Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.