1. Neuroscience
Download icon

Dopamine neuron dependent behaviorsmediated by glutamate cotransmission

Research Article
  • Cited 13
  • Views 2,917
  • Annotations
Cite this article as: eLife 2017;6:e27566 doi: 10.7554/eLife.27566

Abstract

Dopamine neurons in the ventral tegmental area use glutamate as a cotransmitter. To elucidate the behavioral role of the cotransmission, we targeted the glutamate-recycling enzyme glutaminase (gene Gls1). In mice with a dopamine transporter (Slc6a3)-driven conditional heterozygous (cHET) reduction of Gls1 in their dopamine neurons, dopamine neuron survival and transmission were unaffected, while glutamate cotransmission at phasic firing frequencies was reduced, enabling focusing the cotransmission. The mice showed normal emotional and motor behaviors, and an unaffected response to acute amphetamine. Strikingly, amphetamine sensitization was reduced and latent inhibition potentiated. These behavioral effects, also seen in global GLS1 HETs with a schizophrenia resilience phenotype, were not seen in mice with an Emx1-driven forebrain reduction affecting most brain glutamatergic neurons. Thus, a reduction in dopamine neuron glutamate cotransmission appears to mediate significant components of the GLS1 HET schizophrenia resilience phenotype, and glutamate cotransmission appears to be important in attribution of motivational salience.

Article and author information

Author details

  1. Susana Mingote

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    mingote@nyspi.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Nao Chuhma

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Abigail Kalmbach

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gretchen M Thomsen

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yvonne Wang

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andra Mihali

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Caroline E Sferrazza

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5861-111X
  8. Ilana Zucker-Scharff

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anna-Claire Siena

    Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Martha G Welch

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. José Lizardi-Ortiz

    Department of Neurology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David Sulzer

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7632-0439
  13. Holly Moore

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Inna Gaisler-Salomon

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Stephen Rayport

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    sgr1@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9755-7486

Funding

National Institute on Drug Abuse (MH 087758)

  • Stephen Rayport

National Institute on Drug Abuse (DA017978)

  • Stephen Rayport

NARSAD (Young Investigator Award)

  • Susana Mingote

National Institute of Mental Health (MH086404)

  • Holly Moore
  • Stephen Rayport

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, under protocols approved by the Institutional Animal Care and Use Committees of Columbia University (# AC-AAAB2862) and New York State Psychiatric Institute (# 1249). All surgery was performed under ketamine + xylazine anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Publication history

  1. Received: April 6, 2017
  2. Accepted: July 6, 2017
  3. Accepted Manuscript published: July 13, 2017 (version 1)
  4. Version of Record published: September 14, 2017 (version 2)

Copyright

© 2017, Mingote et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,917
    Page views
  • 608
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Igor Gridchyn et al.
    Research Article Updated

    In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Sandra Fendl et al.
    Tools and Resources

    Neurotransmitter receptors and ion channels shape the biophysical properties of neurons, from the sign of the response mediated by neurotransmitter receptors to the dynamics shaped by voltage-gated ion channels. Therefore, knowing the localizations and types of receptors and channels present in neurons is fundamental to our understanding of neural computation. Here, we developed two approaches to visualize the subcellular localization of specific proteins in Drosophila: The flippase-dependent expression of GFP-tagged receptor subunits in single neurons and 'FlpTag', a versatile new tool for the conditional labelling of endogenous proteins. Using these methods, we investigated the subcellular distribution of the receptors GluClα, Rdl, and Dα7 and the ion channels para and Ih in motion-sensing T4/T5 neurons of the Drosophila visual system. We discovered a strictly segregated subcellular distribution of these proteins and a sequential spatial arrangement of glutamate, acetylcholine, and GABA receptors along the dendrite that matched the previously reported EM-reconstructed synapse distributions.