Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems

  1. Sukrit Silas
  2. Patricia Lucas-Elio
  3. Simon A Jackson
  4. Alejandra Aroca-Crevillén
  5. Loren L Hansen
  6. Peter C Fineran
  7. Andrew Z Fire  Is a corresponding author
  8. Antonio Sánchez-Amat  Is a corresponding author
  1. Stanford University, United States
  2. Universidad de Murcia, Spain
  3. University of Otago, New Zealand
  4. Stanford University School of Medicine, United States

Abstract

CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea. One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an "arms race" in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sukrit Silas

    Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Patricia Lucas-Elio

    Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7182-1189
  3. Simon A Jackson

    Microbiology and Immunology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4512-3093
  4. Alejandra Aroca-Crevillén

    Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Loren L Hansen

    Pathology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter C Fineran

    Microbiology & Immunology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4639-6704
  7. Andrew Z Fire

    Pathology and Genetics, Stanford University School of Medicine, Stanford, United States
    For correspondence
    afire@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6217-8312
  8. Antonio Sánchez-Amat

    Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    For correspondence
    antonio@um.es
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01-GM37706)

  • Andrew Z Fire

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Silas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,346
    views
  • 479
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sukrit Silas
  2. Patricia Lucas-Elio
  3. Simon A Jackson
  4. Alejandra Aroca-Crevillén
  5. Loren L Hansen
  6. Peter C Fineran
  7. Andrew Z Fire
  8. Antonio Sánchez-Amat
(2017)
Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems
eLife 6:e27601.
https://doi.org/10.7554/eLife.27601

Share this article

https://doi.org/10.7554/eLife.27601

Further reading

    1. Microbiology and Infectious Disease
    Manuela C Aguirre-Botero, Olga Pacios ... Rogerio Amino
    Research Article

    Plasmodium sporozoites are inoculated into the skin during the bite of an infected mosquito. This motile stage invades cutaneous blood vessels to reach the liver and infect hepatocytes. The circumsporozoite protein (CSP) on the sporozoite surface is an important antigen targeted by protective antibodies (Abs) in immunoprophylaxis or elicited by vaccination. Antibody-mediated protection mainly unfolds during parasite skin migration, but rare and potent protective Abs additionally neutralize sporozoite in the liver. Here, using a rodent malaria model, microscopy and bioluminescence imaging, we show a late-neutralizing effect of 3D11 anti-CSP monoclonal antibody (mAb) in the liver. The need for several hours to eliminate parasites in the liver was associated with an accumulation of 3D11 effects, starting with the inhibition of sporozoite motility, sinusoidal extravasation, cell invasion, and terminating with the parasite killing inside the invaded cell. This late-neutralizing activity could be helpful to identify more potent therapeutic mAbs with stronger activity in the liver.