Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems

  1. Sukrit Silas
  2. Patricia Lucas-Elio
  3. Simon A Jackson
  4. Alejandra Aroca-Crevillén
  5. Loren L Hansen
  6. Peter C Fineran
  7. Andrew Z Fire  Is a corresponding author
  8. Antonio Sánchez-Amat  Is a corresponding author
  1. Stanford University, United States
  2. Universidad de Murcia, Spain
  3. University of Otago, New Zealand
  4. Stanford University School of Medicine, United States

Abstract

CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea. One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an "arms race" in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sukrit Silas

    Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Patricia Lucas-Elio

    Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7182-1189
  3. Simon A Jackson

    Microbiology and Immunology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4512-3093
  4. Alejandra Aroca-Crevillén

    Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Loren L Hansen

    Pathology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter C Fineran

    Microbiology & Immunology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4639-6704
  7. Andrew Z Fire

    Pathology and Genetics, Stanford University School of Medicine, Stanford, United States
    For correspondence
    afire@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6217-8312
  8. Antonio Sánchez-Amat

    Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
    For correspondence
    antonio@um.es
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01-GM37706)

  • Andrew Z Fire

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Silas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,398
    views
  • 480
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.27601

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.