Macrophage dysfunction initiates colitis during weaning of infant mice lacking the interleukin-10 receptor

  1. Naresh S Redhu
  2. Vasudevan Bakthavatchalu
  3. Evan A Conaway
  4. Dror S Shouval
  5. Amy M Tsou
  6. Jeremy A Goettel
  7. Amlan Biswas
  8. Chuanwu Wang
  9. Michael Field
  10. Werner Muller
  11. Andre Bleich
  12. Ning Li
  13. Georg K Gerber
  14. Lynn Bry
  15. James G Fox
  16. Scott B Snapper  Is a corresponding author
  17. Bruce H Horwitz  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Massachusetts Institute of Technology, United States
  3. Brigham and Women's Hospital, United States
  4. University of Manchester, United Kingdom
  5. Hannover Medical School, Germany
  6. Harvard Medical School, United States

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript updated
  3. Accepted Manuscript published
  4. Accepted
  5. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Naresh S Redhu
  2. Vasudevan Bakthavatchalu
  3. Evan A Conaway
  4. Dror S Shouval
  5. Amy M Tsou
  6. Jeremy A Goettel
  7. Amlan Biswas
  8. Chuanwu Wang
  9. Michael Field
  10. Werner Muller
  11. Andre Bleich
  12. Ning Li
  13. Georg K Gerber
  14. Lynn Bry
  15. James G Fox
  16. Scott B Snapper
  17. Bruce H Horwitz
(2017)
Macrophage dysfunction initiates colitis during weaning of infant mice lacking the interleukin-10 receptor
eLife 6:e27652.
https://doi.org/10.7554/eLife.27652

Share this article

https://doi.org/10.7554/eLife.27652