Automated long-term recording and analysis of neural activity in behaving animals

Abstract

Addressing how neural circuits underlie behavior is routinely done by measuring electrical activity from single neurons in experimental sessions. While such recordings yield snapshots of neural dynamics during specified tasks, they are ill-suited for tracking single-unit activity over longer timescales relevant for most developmental and learning processes, or for capturing neural dynamics across different behavioral states. Here we describe an automated platform for continuous long-term recordings of neural activity and behavior in freely moving rodents. An unsupervised algorithm identifies and tracks the activity of single units over weeks of recording, dramatically simplifying the analysis of large datasets. Months-long recordings from motor cortex and striatum made and analyzed with our system revealed remarkable stability in basic neuronal properties, such as firing rates and inter-spike interval distributions. Interneuronal correlations and the representation of different movements and behaviors were similarly stable. This establishes the feasibility of high-throughput long-term extracellular recordings in behaving animals.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Ashesh K Dhawale

    Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7438-1115
  2. Rajesh Poddar

    Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Steffen BE Wolff

    Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Valentin A Normand

    Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Evi Kopelowitz

    Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bence P Ölveczky

    Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, United States
    For correspondence
    olveczky@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2499-2705

Funding

Star Family Challenge Award

  • Bence P Ölveczky

Human Frontier Science Program

  • Steffen B.E Wolff

Life Sciences Research Foundation

  • Ashesh K Dhawale

Charles A. King Trust

  • Ashesh K Dhawale

National Institute of Neurological Disorders and Stroke (R01 NS099323-02)

  • Bence P Ölveczky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#29-15) of the Harvard University. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Dhawale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,824
    views
  • 1,530
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashesh K Dhawale
  2. Rajesh Poddar
  3. Steffen BE Wolff
  4. Valentin A Normand
  5. Evi Kopelowitz
  6. Bence P Ölveczky
(2017)
Automated long-term recording and analysis of neural activity in behaving animals
eLife 6:e27702.
https://doi.org/10.7554/eLife.27702

Share this article

https://doi.org/10.7554/eLife.27702

Further reading

    1. Neuroscience
    Sofie Louise Valk, Veronika Engert ... Tania Singer
    Research Article

    The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills (Affect module), as compared to socio-cognitive skills (Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.

    1. Neuroscience
    David L Haggerty, Brady K Atwood
    Research Advance

    How does alcohol consumption alter synaptic transmission across time, and do these alcohol-induced neuroadaptations occur similarly in both male and female mice? Previously we identified that anterior insular cortex (AIC) projections to the dorsolateral striatum (DLS) are uniquely sensitive to alcohol-induced neuroadaptations in male, but not female mice, and play a role in governing binge alcohol consumption in male mice (Haggerty et al., 2022). Here, by using high-resolution behavior data paired with in-vivo fiber photometry, we show how similar levels of alcohol intake are achieved via different behavioral strategies across sexes, and how inter-drinking session thirst states predict future alcohol intakes in females, but not males. Furthermore, we show how presynaptic calcium activity recorded from AIC synaptic inputs in the DLS across 3 weeks of water consumption followed by 3 weeks of binge alcohol consumption changes across, fluid, time, sex, and brain circuit lateralization. By time-locking presynaptic calcium activity from AIC inputs to the DLS to peri-initiation of drinking events we also show that AIC inputs into the left DLS robustly encode binge alcohol intake behaviors relative to water consumption. These findings suggest a fluid-, sex-, and lateralization-dependent role for the engagement of AIC inputs into the DLS that encode binge alcohol consumption behaviors and further contextualize alcohol-induced neuroadaptations at AIC inputs to the DLS.