The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry

  1. Joseph Atherton
  2. I-Mei Yu
  3. Alexander Cook
  4. Joseph M Muretta
  5. Agnel Joseph
  6. Jennifer Major
  7. Yannick Sourigues
  8. Jeffrey Clause
  9. Maya Topf
  10. Steven S Rosenfeld
  11. Anne Houdusse
  12. Carolyn A Moores  Is a corresponding author
  1. Birkbeck College, United Kingdom
  2. Institut Curie, Centre National de la Recherche Scientifique, France
  3. University of Minnesota, United States
  4. Lerner Research Institute, Cleveland Clinic, United States

Abstract

MKLP2, a kinesin-6, has critical roles during the metaphase-anaphase transition and cytokinesis. Its motor domain contains conserved nucleotide binding motifs, but is divergent in sequence (~35% identity) and size (~40% larger) compared to other kinesins. Using cryo-electron microscopy and biophysical assays, we have undertaken a mechanochemical dissection of the microtubule-bound MKLP2 motor domain during its ATPase cycle, and show that many facets of its mechanism are distinct from other kinesins. While the MKLP2 neck-linker is directed towards the microtubule plus-end in an ATP-like state, it does not fully dock along the motor domain. Furthermore, the footprint of the MKLP2 motor domain on the MT surface is altered compared to motile kinesins, and enhanced by kinesin-6-specific sequences. The conformation of the highly extended loop6 insertion characteristic of kinesin-6s is nucleotide-independent and does not contact the MT surface. Our results emphasize the role of family-specific insertions in modulating kinesin motor function.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Joseph Atherton

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. I-Mei Yu

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Cook

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Joseph M Muretta

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Agnel Joseph

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer Major

    Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Clevelan, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yannick Sourigues

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeffrey Clause

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Maya Topf

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Steven S Rosenfeld

    Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anne Houdusse

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Carolyn A Moores

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    For correspondence
    c.moores@mail.cryst.bbk.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-6290

Funding

Medical Research Council (MR/J000973/1)

  • Carolyn A Moores

Medical Research Council (MR/J003867/1)

  • Alexander Cook

Medical Research Council (MR/M019292/1)

  • Maya Topf

American Heart Association (SDG20480032)

  • Joseph M Muretta

National Institute of General Medical Sciences (GM102875 NS073610)

  • Steven S Rosenfeld

Centre National de la Recherche Scientifique

  • Anne Houdusse

Agence Nationale de la Recherche

  • Anne Houdusse

Ligue Contre le Cancer

  • Anne Houdusse

European Commission (Marie Curie Fellowship)

  • I-Mei Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Version history

  1. Received: April 15, 2017
  2. Accepted: August 7, 2017
  3. Accepted Manuscript published: August 11, 2017 (version 1)
  4. Version of Record published: September 18, 2017 (version 2)
  5. Version of Record updated: March 12, 2019 (version 3)

Copyright

© 2017, Atherton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,792
    views
  • 631
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Atherton
  2. I-Mei Yu
  3. Alexander Cook
  4. Joseph M Muretta
  5. Agnel Joseph
  6. Jennifer Major
  7. Yannick Sourigues
  8. Jeffrey Clause
  9. Maya Topf
  10. Steven S Rosenfeld
  11. Anne Houdusse
  12. Carolyn A Moores
(2017)
The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry
eLife 6:e27793.
https://doi.org/10.7554/eLife.27793

Share this article

https://doi.org/10.7554/eLife.27793

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.