The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry

  1. Joseph Atherton
  2. I-Mei Yu
  3. Alexander Cook
  4. Joseph M Muretta
  5. Agnel Joseph
  6. Jennifer Major
  7. Yannick Sourigues
  8. Jeffrey Clause
  9. Maya Topf
  10. Steven S Rosenfeld
  11. Anne Houdusse
  12. Carolyn A Moores  Is a corresponding author
  1. Birkbeck College, United Kingdom
  2. Institut Curie, Centre National de la Recherche Scientifique, France
  3. University of Minnesota, United States
  4. Lerner Research Institute, Cleveland Clinic, United States

Abstract

MKLP2, a kinesin-6, has critical roles during the metaphase-anaphase transition and cytokinesis. Its motor domain contains conserved nucleotide binding motifs, but is divergent in sequence (~35% identity) and size (~40% larger) compared to other kinesins. Using cryo-electron microscopy and biophysical assays, we have undertaken a mechanochemical dissection of the microtubule-bound MKLP2 motor domain during its ATPase cycle, and show that many facets of its mechanism are distinct from other kinesins. While the MKLP2 neck-linker is directed towards the microtubule plus-end in an ATP-like state, it does not fully dock along the motor domain. Furthermore, the footprint of the MKLP2 motor domain on the MT surface is altered compared to motile kinesins, and enhanced by kinesin-6-specific sequences. The conformation of the highly extended loop6 insertion characteristic of kinesin-6s is nucleotide-independent and does not contact the MT surface. Our results emphasize the role of family-specific insertions in modulating kinesin motor function.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Joseph Atherton

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. I-Mei Yu

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Cook

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Joseph M Muretta

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Agnel Joseph

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer Major

    Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Clevelan, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yannick Sourigues

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeffrey Clause

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Maya Topf

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Steven S Rosenfeld

    Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Anne Houdusse

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Carolyn A Moores

    Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    For correspondence
    c.moores@mail.cryst.bbk.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-6290

Funding

Medical Research Council (MR/J000973/1)

  • Carolyn A Moores

Medical Research Council (MR/J003867/1)

  • Alexander Cook

Medical Research Council (MR/M019292/1)

  • Maya Topf

American Heart Association (SDG20480032)

  • Joseph M Muretta

National Institute of General Medical Sciences (GM102875 NS073610)

  • Steven S Rosenfeld

Centre National de la Recherche Scientifique

  • Anne Houdusse

Agence Nationale de la Recherche

  • Anne Houdusse

Ligue Contre le Cancer

  • Anne Houdusse

European Commission (Marie Curie Fellowship)

  • I-Mei Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Atherton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,910
    views
  • 653
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Atherton
  2. I-Mei Yu
  3. Alexander Cook
  4. Joseph M Muretta
  5. Agnel Joseph
  6. Jennifer Major
  7. Yannick Sourigues
  8. Jeffrey Clause
  9. Maya Topf
  10. Steven S Rosenfeld
  11. Anne Houdusse
  12. Carolyn A Moores
(2017)
The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry
eLife 6:e27793.
https://doi.org/10.7554/eLife.27793

Share this article

https://doi.org/10.7554/eLife.27793

Further reading

    1. Structural Biology and Molecular Biophysics
    Parveen Goyal, KanagaVijayan Dhanabalan ... Subramanian Ramaswamy
    Research Advance

    N -Acetylneuraminic acid (Neu5Ac) is a negatively charged nine-carbon amino sugar that is often the peripheral sugar in human cell-surface glycoconjugates. Some bacteria scavenge, import, and metabolize Neu5Ac or redeploy it on their cell surfaces for immune evasion. The import of Neu5Ac by many bacteria is mediated by tripartite ATP-independent periplasmic (TRAP) transporters. We have previously reported the structures of SiaQM, a membrane-embedded component of the Haemophilus influenzae TRAP transport system, (Currie et al., 2024). However, none of the published structures contain Neu5Ac bound to SiaQM. This information is critical for defining the transport mechanism and for further structure-activity relationship studies. Here, we report the structures of Fusobacterium nucleatum SiaQM with and without Neu5Ac. Both structures are in an inward (cytoplasmic side) facing conformation. The Neu5Ac-bound structure reveals the interactions of Neu5Ac with the transporter and its relationship with the Na+ binding sites. Two of the Na+-binding sites are similar to those described previously. We identify a third metal-binding site that is further away and buried in the elevator domain. Ser300 and Ser345 interact with the C1-carboxylate group of Neu5Ac. Proteoliposome-based transport assays showed that Ser300-Neu5Ac interaction is critical for transport, whereas Ser345 is dispensable. Neu5Ac primarily interacts with residues in the elevator domain of the protein, thereby supporting the elevator with an operator mechanism. The residues interacting with Neu5Ac are conserved, providing fundamental information required to design inhibitors against this class of proteins.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.