The complex of TRIP-Br1 and XIAP ubiquitinates and degrades multiple adenylyl cyclase isoforms

  1. Wenbao Hu
  2. Xiaojie Yu
  3. Zhengzhao Liu
  4. Ying Sun
  5. Xibing Chen
  6. Xin Yang
  7. Xiaofen Li
  8. Wai Kwan Lam
  9. Yuanyuan Duan
  10. Xu Cao
  11. Hermann Steller
  12. Kai Liu
  13. Pingbo Huang  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. The Rockefeller University, United States

Abstract

Adenylyl cyclases (ACs) generate cAMP, a second messenger of utmost importance that regulates a vast array of biological processes in all kingdoms of life. However, almost nothing is known about how AC activity is regulated through protein degradation mediated by ubiquitination or other mechanisms. Here, we show that transcriptional regulator interacting with the PHD-bromodomain 1(TRIP-Br1, Sertad1), a newly identified protein with poorly characterized functions, acts as an adaptor that bridges the interaction of multiple AC isoforms with X-linked inhibitor of apoptosis protein (XIAP), a RING-domain E3 ubiquitin ligase. XIAP ubiquitinates a highly conserved Lys residue in AC isoforms and thereby accelerates the endocytosis and degradation of multiple AC isoforms in human cell lines. And XIAP/TRIP-Br1-mediated degradation of ACs forms part of a negative-feedback loop that controls the homeostasis of cAMP signaling in mice. Our findings reveal a previously unrecognized mechanism for degrading multiple AC isoforms and modulating the homeostasis of cAMP signaling.

Article and author information

Author details

  1. Wenbao Hu

    Division of Life Science, Hong Kong University of Science and Technology, Kwoloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaojie Yu

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhengzhao Liu

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  4. Ying Sun

    Division of Life Science, Hong Kong University of Science and Technology, Kowloo, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Xibing Chen

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Xin Yang

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaofen Li

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  8. Wai Kwan Lam

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuanyuan Duan

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  10. Xu Cao

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  11. Hermann Steller

    Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute,, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kai Liu

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  13. Pingbo Huang

    Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
    For correspondence
    bohuangp@ust.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4560-8760

Funding

The Kong Kong Grants Council (GRF660913)

  • Pingbo Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the University Committee on Research Practices at the Hong Kong University of Science and Technology (the ethics protocol number 2014028).

Copyright

© 2017, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,058
    views
  • 324
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenbao Hu
  2. Xiaojie Yu
  3. Zhengzhao Liu
  4. Ying Sun
  5. Xibing Chen
  6. Xin Yang
  7. Xiaofen Li
  8. Wai Kwan Lam
  9. Yuanyuan Duan
  10. Xu Cao
  11. Hermann Steller
  12. Kai Liu
  13. Pingbo Huang
(2017)
The complex of TRIP-Br1 and XIAP ubiquitinates and degrades multiple adenylyl cyclase isoforms
eLife 6:e28021.
https://doi.org/10.7554/eLife.28021

Share this article

https://doi.org/10.7554/eLife.28021

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Cell Biology
    2. Neuroscience
    Vibhavari Aysha Bansal, Jia Min Tan ... Toh Hean Ch'ng
    Research Article

    The emergence of Aβ pathology is one of the hallmarks of Alzheimer’s disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis – a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.