Proximal clustering between BK and CaV1.3 channels promotes functional coupling and BK channel activation at low voltage

  1. Oscar Vivas  Is a corresponding author
  2. Claudia M Moreno
  3. Luis F Santana
  4. Bertil Hille
  1. University of Washington, United States
  2. University of California, Davis, United States

Abstract

CaV-channel dependent activation of BK channels is critical for feedback control of both calcium influx and cell excitability. Here we addressed the functional and spatial interaction between BK and CaV1.3 channels, unique CaV1 channels that activate at low voltages. We found that when BK and CaV1.3 channels were co-expressed in the same cell, BK channels started activating near -50 mV, ~30 mV more negative than for activation of co-expressed BK and high-voltage activated CaV2.2 channels. In addition, single-molecule localization microscopy revealed striking clusters of CaV1.3 channels surrounding clusters of BK channels and forming a multi-channel complex both in a heterologous system and in rat hippocampal and sympathetic neurons. We propose that this spatial arrangement allows tight tracking between local BK channel activation and the gating of CaV1.3 channels at quite negative membrane potentials, facilitating the regulation of neuronal excitability at voltages close to the threshold to fire action potentials.

Article and author information

Author details

  1. Oscar Vivas

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    For correspondence
    vivas@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0964-385X
  2. Claudia M Moreno

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Luis F Santana

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4297-8029
  4. Bertil Hille

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Neurological Disorders and Stroke (R37NS008174)

  • Bertil Hille

National Heart, Lung, and Blood Institute (R01HL085686)

  • Luis F Santana

Wayne E. Crill Endowed Professorship (Professor Fellowship)

  • Bertil Hille

National Heart, Lung, and Blood Institute (R01HL085870)

  • Luis F Santana

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Ethics

Animal experimentation: Animals were handled according to guidelines approved by the University of Washington Institutional Animal Care and Use Committee (#2084-03).

Version history

  1. Received: April 23, 2017
  2. Accepted: June 28, 2017
  3. Accepted Manuscript published: June 30, 2017 (version 1)
  4. Accepted Manuscript updated: July 3, 2017 (version 2)
  5. Version of Record published: July 10, 2017 (version 3)

Copyright

© 2017, Vivas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,118
    Page views
  • 583
    Downloads
  • 43
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oscar Vivas
  2. Claudia M Moreno
  3. Luis F Santana
  4. Bertil Hille
(2017)
Proximal clustering between BK and CaV1.3 channels promotes functional coupling and BK channel activation at low voltage
eLife 6:e28029.
https://doi.org/10.7554/eLife.28029

Share this article

https://doi.org/10.7554/eLife.28029

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Karolina Honzejkova, Dalibor Kosek ... Tomas Obsil
    Research Article

    Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniyal Tariq, Nicole Maurici ... Brian R Crane
    Research Article

    Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid–liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.