Ubiquitination-dependent control of sexual differentiation in fission yeast

  1. Fabrizio Simonetti
  2. Tito Candelli
  3. Sebastien Leon
  4. Domenico Libri
  5. Mathieu Rougemaille  Is a corresponding author
  1. Université Paris-Diderot, France
  2. Université Paris-Saclay, France

Abstract

In fission yeast, meiosis-specific transcripts are selectively eliminated during vegetative growth by the combined action of the YTH-family RNA-binding protein Mmi1 and the nuclear exosome. Upon nutritional starvation, the master regulator of meiosis Mei2 inactivates Mmi1, thereby allowing expression of the meiotic program. Here, we show that the E3 ubiquitin ligase subunit Not4/Mot2 of the evolutionarily conserved Ccr4-Not complex, which associates with Mmi1, promotes suppression of meiotic transcripts expression in mitotic cells. Our analyses suggest that Mot2 directs ubiquitination of Mei2 to preserve the activity of Mmi1 during vegetative growth. Importantly, Mot2 is not involved in the constitutive pathway of Mei2 turnover, but rather plays a regulatory role to limit its accumulation or inhibit its function. We propose that Mmi1 recruits the Ccr4-Not complex to counteract its own inhibitor Mei2, thereby locking the system in a stable state that ensures the repression of the meiotic program by Mmi1.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Fabrizio Simonetti

    Institut Jacques Monod, Université Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Tito Candelli

    Institut Jacques Monod, Université Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sebastien Leon

    Institut Jacques Monod, Université Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2536-8595
  4. Domenico Libri

    Institut Jacques Monod, Université Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Mathieu Rougemaille

    Institut de Biologie Intégrative de la Cellule, CNRS, UMR9198, Université Paris-Saclay, Gif-sur-Yvette, France
    For correspondence
    mathieu.rougemaille@i2bc.paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9675-3888

Funding

Fondation Bettencourt Schueller (prix Coup d'Elan 2009)

  • Domenico Libri

Fondation ARC pour la Recherche sur le Cancer (Projet Fondation ARC 1782)

  • Mathieu Rougemaille

Agence Nationale de la Recherche (ANR-2016-CE12-0031-01)

  • Mathieu Rougemaille

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Torben Heick Jensen, Aarhus University, Denmark

Version history

  1. Received: April 24, 2017
  2. Accepted: August 21, 2017
  3. Accepted Manuscript published: August 25, 2017 (version 1)
  4. Version of Record published: September 26, 2017 (version 2)

Copyright

© 2017, Simonetti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,667
    views
  • 358
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabrizio Simonetti
  2. Tito Candelli
  3. Sebastien Leon
  4. Domenico Libri
  5. Mathieu Rougemaille
(2017)
Ubiquitination-dependent control of sexual differentiation in fission yeast
eLife 6:e28046.
https://doi.org/10.7554/eLife.28046

Share this article

https://doi.org/10.7554/eLife.28046

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.