Organization of the Drosophila larval visual circuit

  1. Ivan Larderet
  2. Pauline MJ Fritsch
  3. Nanae Gendre
  4. G Larisa Neagu-Maier
  5. Richard D Fetter
  6. Casey M Schneider-Mizell
  7. James W Truman
  8. Marta Zlatic
  9. Albert Cardona
  10. Simon G Sprecher  Is a corresponding author
  1. University of Fribourg, Switzerland
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

Article and author information

Author details

  1. Ivan Larderet

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Pauline MJ Fritsch

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Nanae Gendre

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. G Larisa Neagu-Maier

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard D Fetter

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Casey M Schneider-Mizell

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9477-3853
  7. James W Truman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Marta Zlatic

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Albert Cardona

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4941-6536
  10. Simon G Sprecher

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    For correspondence
    simon.sprecher@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9060-3750

Funding

Bundesbehörden der Schweizerischen Eidgenossenschaft (31003A_169993)

  • Simon G Sprecher

Seventh Framework Programme (ERC-2012-StG 309832-PhotoNaviNet)

  • Simon G Sprecher

Howard Hughes Medical Institute

  • James W Truman
  • Marta Zlatic
  • Albert Cardona

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: May 5, 2017
  2. Accepted: August 7, 2017
  3. Accepted Manuscript published: August 8, 2017 (version 1)
  4. Version of Record published: August 18, 2017 (version 2)

Copyright

© 2017, Larderet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,706
    Page views
  • 555
    Downloads
  • 36
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ivan Larderet
  2. Pauline MJ Fritsch
  3. Nanae Gendre
  4. G Larisa Neagu-Maier
  5. Richard D Fetter
  6. Casey M Schneider-Mizell
  7. James W Truman
  8. Marta Zlatic
  9. Albert Cardona
  10. Simon G Sprecher
(2017)
Organization of the Drosophila larval visual circuit
eLife 6:e28387.
https://doi.org/10.7554/eLife.28387

Further reading

    1. Neuroscience
    Xiaosha Wang, Bijun Wang, Yanchao Bi
    Research Article Updated

    One signature of the human brain is its ability to derive knowledge from language inputs, in addition to nonlinguistic sensory channels such as vision and touch. How does human language experience modulate the mechanism by which semantic knowledge is stored in the human brain? We investigated this question using a unique human model with varying amounts and qualities of early language exposure: early deaf adults who were born to hearing parents and had reduced early exposure and delayed acquisition of any natural human language (speech or sign), with early deaf adults who acquired sign language from birth as the control group that matches on nonlinguistic sensory experiences. Neural responses in a semantic judgment task with 90 written words that were familiar to both groups were measured using fMRI. The deaf group with reduced early language exposure, compared with the deaf control group, showed reduced semantic sensitivity, in both multivariate pattern (semantic structure encoding) and univariate (abstractness effect) analyses, in the left dorsal anterior temporal lobe (dATL). These results provide positive, causal evidence that language experience drives the neural semantic representation in the dATL, highlighting the roles of language in forming human neural semantic structures beyond nonverbal sensory experiences.

    1. Neuroscience
    Ayako Yamaguchi, Manon Peltier
    Research Article Updated

    Across phyla, males often produce species-specific vocalizations to attract females. Although understanding the neural mechanisms underlying behavior has been challenging in vertebrates, we previously identified two anatomically distinct central pattern generators (CPGs) that drive the fast and slow clicks of male Xenopus laevis, using an ex vivo preparation that produces fictive vocalizations. Here, we extended this approach to four additional species, X. amieti, X. cliivi, X. petersii, and X. tropicalis, by developing ex vivo brain preparation from which fictive vocalizations are elicited in response to a chemical or electrical stimulus. We found that even though the courtship calls are species-specific, the CPGs used to generate clicks are conserved across species. The fast CPGs, which critically rely on reciprocal connections between the parabrachial nucleus and the nucleus ambiguus, are conserved among fast-click species, and slow CPGs are shared among slow-click species. In addition, our results suggest that testosterone plays a role in organizing fast CPGs in fast-click species, but not in slow-click species. Moreover, fast CPGs are not inherited by all species but monopolized by fast-click species. The results suggest that species-specific calls of the genus Xenopus have evolved by utilizing conserved slow and/or fast CPGs inherited by each species.