1. Neuroscience
Download icon

Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt)

  1. Timothy Erickson
  2. Clive P Morgan
  3. Jennifer Olt
  4. Katherine Hardy
  5. Elisabeth M Busch-Nentwich
  6. Reo Maeda
  7. Rachel Clemens-Grisham
  8. Jocelyn F Krey
  9. Alex V Nechiporuk
  10. Peter G Barr-Gillespie
  11. Walter Marcotti
  12. Teresa Nicolson  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. University of Sheffield, United Kingdom
  3. Wellcome Trust Sanger Institute, United Kingdom
Research Article
  • Cited 25
  • Views 1,945
  • Annotations
Cite this article as: eLife 2017;6:e28474 doi: 10.7554/eLife.28474

Abstract

Transmembrane O-methyltransferase (TOMT / LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle.

Article and author information

Author details

  1. Timothy Erickson

    Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0910-2535
  2. Clive P Morgan

    Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer Olt

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Katherine Hardy

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisabeth M Busch-Nentwich

    Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6450-744X
  6. Reo Maeda

    Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rachel Clemens-Grisham

    Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jocelyn F Krey

    Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alex V Nechiporuk

    Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter G Barr-Gillespie

    Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9787-5860
  11. Walter Marcotti

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8770-7628
  12. Teresa Nicolson

    Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    nicolson@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0873-1583

Funding

National Institutes of Health (R01DC013572)

  • Teresa Nicolson

National Institutes of Health (NIH R01 DC013531)

  • Teresa Nicolson

Wellcome Trust (102892)

  • Walter Marcotti

National Institutes of Health (R01DC002368)

  • Peter G Barr-Gillespie

National Institutes of Health (P30DC005983)

  • Peter G Barr-Gillespie

National Institutes of Health (R01DC002368)

  • Alex V Nechiporuk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal research complied with guidelines stipulated by the Institutional Animal Care and Use Committed at Oregon Health and Science University (IP00000100). Electrophysiological recordings from zebrafish larvae were licensed by the Home Office under the Animals (Scientific Procedures) Act 1986 and were approved by the University of Sheffield Ethical Review Committee.

Reviewing Editor

  1. David D Ginty, Howard Hughes Medical Institute, Harvard Medical School, United States

Publication history

  1. Received: May 9, 2017
  2. Accepted: May 20, 2017
  3. Accepted Manuscript published: May 23, 2017 (version 1)
  4. Version of Record published: June 7, 2017 (version 2)

Copyright

© 2017, Erickson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,945
    Page views
  • 385
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Gustavo Della-Flora Nunes et al.
    Research Article Updated

    Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.

    1. Neuroscience
    Katherine B LeClair et al.
    Research Article

    Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, though gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.