Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus

  1. Jeannine A Ott
  2. Caitlin D Castro
  3. Thaddeus C Deiss
  4. Yuko Ohta
  5. Martin F Flajnik
  6. Michael F Criscitiello  Is a corresponding author
  1. Texas A&M University, United States
  2. University of Maryland, United States

Abstract

Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates.

Data availability

T cell receptor sequences have been deposited in Genbank of NCBI.Alpha KY189332-KY189354 and KY366469-KY355487;Beta KY351708-KY366487;Gamma KY351639-KY351707;Delta KY346705-KY346816

Article and author information

Author details

  1. Jeannine A Ott

    Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3537-8631
  2. Caitlin D Castro

    Department of Microbiology and Immunology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thaddeus C Deiss

    Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuko Ohta

    Department of Microbiology and Immunology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Martin F Flajnik

    Department of Microbiology and Immunology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael F Criscitiello

    Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, United States
    For correspondence
    MCRISCITIELLO@CVM.TAMU.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4262-7832

Funding

National Science Foundation (IOS 1257829)

  • Michael F Criscitiello

National Institute of Allergy and Infectious Diseases (R01OD0549)

  • Martin F Flajnik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David G Schatz, Yale University School of Medicine, United States

Ethics

Animal experimentation: These studies were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Animal Care and Use Committees at Texas A&M University and University of Maryland School of Medicine. Experiments in the Criscitiello lab were performed under Texas A&M University Institutional Biosafety Committee permit IBC 2014-293 and Animal Use Protocol 2015-0374.

Version history

  1. Received: May 9, 2017
  2. Accepted: April 16, 2018
  3. Accepted Manuscript published: April 17, 2018 (version 1)
  4. Version of Record published: May 2, 2018 (version 2)
  5. Version of Record updated: May 2, 2018 (version 3)

Copyright

© 2018, Ott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,717
    views
  • 320
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeannine A Ott
  2. Caitlin D Castro
  3. Thaddeus C Deiss
  4. Yuko Ohta
  5. Martin F Flajnik
  6. Michael F Criscitiello
(2018)
Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus
eLife 7:e28477.
https://doi.org/10.7554/eLife.28477

Share this article

https://doi.org/10.7554/eLife.28477

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Immunology and Inflammation
    2. Medicine
    Joanna C Porter, Jamie Inshaw ... Venizelos Papayannopoulos
    Research Article

    Background:

    Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.

    Methods:

    Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.

    Results:

    We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01–2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).

    Conclusions:

    Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.

    Funding:

    LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).

    Clinical trial number:

    NCT04359654.