Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus

  1. Jeannine A Ott
  2. Caitlin D Castro
  3. Thaddeus C Deiss
  4. Yuko Ohta
  5. Martin F Flajnik
  6. Michael F Criscitiello  Is a corresponding author
  1. Texas A&M University, United States
  2. University of Maryland, United States

Abstract

Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates.

Data availability

T cell receptor sequences have been deposited in Genbank of NCBI.Alpha KY189332-KY189354 and KY366469-KY355487;Beta KY351708-KY366487;Gamma KY351639-KY351707;Delta KY346705-KY346816

Article and author information

Author details

  1. Jeannine A Ott

    Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3537-8631
  2. Caitlin D Castro

    Department of Microbiology and Immunology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thaddeus C Deiss

    Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuko Ohta

    Department of Microbiology and Immunology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Martin F Flajnik

    Department of Microbiology and Immunology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael F Criscitiello

    Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, United States
    For correspondence
    MCRISCITIELLO@CVM.TAMU.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4262-7832

Funding

National Science Foundation (IOS 1257829)

  • Michael F Criscitiello

National Institute of Allergy and Infectious Diseases (R01OD0549)

  • Martin F Flajnik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: These studies were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Animal Care and Use Committees at Texas A&M University and University of Maryland School of Medicine. Experiments in the Criscitiello lab were performed under Texas A&M University Institutional Biosafety Committee permit IBC 2014-293 and Animal Use Protocol 2015-0374.

Copyright

© 2018, Ott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,840
    views
  • 331
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.28477

Further reading

    1. Biochemistry and Chemical Biology
    2. Immunology and Inflammation
    Pavla Nedbalová, Nikola Kaislerova ... Tomáš Doležal
    Research Article

    During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.