Prolyl dihydroxylation of unassembled uS12/Rps23 regulates fungal hypoxic adaptation

  1. Sara J Clasen
  2. Wei Shao
  3. He Gu
  4. Peter Espenshade  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States

Abstract

The prolyl-3,4-dihydroxylase Ofd1 and nuclear import adaptor Nro1 regulate the hypoxic response in fission yeast by controlling activity of the sterol regulatory element-binding protein transcription factor Sre1. Here, we identify an extra-ribosomal function for uS12/Rps23 central to this regulatory system. Nro1 binds Rps23, and Ofd1 dihydroxylates Rps23 P62 in complex with Nro1. Concurrently, Nro1 imports Rps23 into the nucleus for assembly into 40S ribosomes. Low oxygen inhibits Ofd1 hydroxylase activity and stabilizes the Ofd1-Rps23-Nro1 complex, thereby sequestering Ofd1 from binding Sre1, which is then free to activate hypoxic gene expression. In vitro studies demonstrate that Ofd1 directly binds Rps23, Nro1, and Sre1 through a consensus binding sequence. Interestingly, Rps23 expression modulates Sre1 activity by changing the Rps23 substrate pool available to Ofd1. To date, oxygen is the only known signal to Sre1, but additional nutrient signals may tune the hypoxic response through control of unassembled Rps23 or Ofd1 activity.

Article and author information

Author details

  1. Sara J Clasen

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wei Shao

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5966-4376
  3. He Gu

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter Espenshade

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    peter.espenshade@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6433-0178

Funding

National Institutes of Health (HL077588)

  • Peter Espenshade

American Heart Association (Predoctoral Fellowship 13PRE15820017)

  • Sara J Clasen

American Heart Association (Grant in Aid 13GRNT16400001)

  • Peter Espenshade

National Institutes of Health (T32 GM007445)

  • Sara J Clasen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Clasen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,031
    views
  • 224
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara J Clasen
  2. Wei Shao
  3. He Gu
  4. Peter Espenshade
(2017)
Prolyl dihydroxylation of unassembled uS12/Rps23 regulates fungal hypoxic adaptation
eLife 6:e28563.
https://doi.org/10.7554/eLife.28563

Share this article

https://doi.org/10.7554/eLife.28563