1. Neuroscience
Download icon

Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex

  1. Maryna Pilkiw
  2. Nathan Insel
  3. Younghua Cui
  4. Caitlin Finney
  5. Mark D Morrissey
  6. Kaori Takehara-Nishiuchi  Is a corresponding author
  1. University of Toronto, Canada
  2. University of Montana, United States
  3. University or Toronto, Canada
Research Article
  • Cited 10
  • Views 1,949
  • Annotations
Cite this article as: eLife 2017;6:e28611 doi: 10.7554/eLife.28611

Abstract

The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features.

Article and author information

Author details

  1. Maryna Pilkiw

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1200-1708
  2. Nathan Insel

    Department of Psychology, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Younghua Cui

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Caitlin Finney

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark D Morrissey

    Department of Psychology, University or Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Kaori Takehara-Nishiuchi

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    takehara@psych.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7282-7838

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2015-05458)

  • Kaori Takehara-Nishiuchi

Canadian Institutes of Health Research (MOP-133693)

  • Kaori Takehara-Nishiuchi

Canada Foundation for Innovation (25026)

  • Kaori Takehara-Nishiuchi

Natural Sciences and Engineering Research Council of Canada (396157093)

  • Maryna Pilkiw

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical and experimental procedures were approved by the Animal Care and Use Committee at the University of Toronto (protocol number: 20011400).

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institutes of Health, United States

Publication history

  1. Received: May 13, 2017
  2. Accepted: July 5, 2017
  3. Accepted Manuscript published: July 6, 2017 (version 1)
  4. Version of Record published: July 31, 2017 (version 2)

Copyright

© 2017, Pilkiw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,949
    Page views
  • 308
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Shenghong He et al.
    Research Article Updated

    Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson’s disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Julien G Roth et al.
    Tools and Resources Updated

    Microdeletions and microduplications of the 16p11.2 chromosomal locus are associated with syndromic neurodevelopmental disorders and reciprocal physiological conditions such as macro/microcephaly and high/low body mass index. To facilitate cellular and molecular investigations into these phenotypes, 65 clones of human induced pluripotent stem cells (hiPSCs) were generated from 13 individuals with 16p11.2 copy number variations (CNVs). To ensure these cell lines were suitable for downstream mechanistic investigations, a customizable bioinformatic strategy for the detection of random integration and expression of reprogramming vectors was developed and leveraged towards identifying a subset of ‘footprint’-free hiPSC clones. Transcriptomic profiling of cortical neural progenitor cells derived from these hiPSCs identified alterations in gene expression patterns which precede morphological abnormalities reported at later neurodevelopmental stages. Interpreting clinical information—available with the cell lines by request from the Simons Foundation Autism Research Initiative—with this transcriptional data revealed disruptions in gene programs related to both nervous system function and cellular metabolism. As demonstrated by these analyses, this publicly available resource has the potential to serve as a powerful medium for probing the etiology of developmental disorders associated with 16p11.2 CNVs.