Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex

  1. Maryna Pilkiw
  2. Nathan Insel
  3. Younghua Cui
  4. Caitlin Finney
  5. Mark D Morrissey
  6. Kaori Takehara-Nishiuchi  Is a corresponding author
  1. University of Toronto, Canada
  2. University of Montana, United States
  3. University or Toronto, Canada

Abstract

The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features.

Article and author information

Author details

  1. Maryna Pilkiw

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1200-1708
  2. Nathan Insel

    Department of Psychology, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Younghua Cui

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Caitlin Finney

    Department of Psychology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark D Morrissey

    Department of Psychology, University or Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Kaori Takehara-Nishiuchi

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    takehara@psych.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7282-7838

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2015-05458)

  • Kaori Takehara-Nishiuchi

Canadian Institutes of Health Research (MOP-133693)

  • Kaori Takehara-Nishiuchi

Canada Foundation for Innovation (25026)

  • Kaori Takehara-Nishiuchi

Natural Sciences and Engineering Research Council of Canada (396157093)

  • Maryna Pilkiw

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical and experimental procedures were approved by the Animal Care and Use Committee at the University of Toronto (protocol number: 20011400).

Copyright

© 2017, Pilkiw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,769
    views
  • 369
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maryna Pilkiw
  2. Nathan Insel
  3. Younghua Cui
  4. Caitlin Finney
  5. Mark D Morrissey
  6. Kaori Takehara-Nishiuchi
(2017)
Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex
eLife 6:e28611.
https://doi.org/10.7554/eLife.28611

Share this article

https://doi.org/10.7554/eLife.28611

Further reading

    1. Neuroscience
    Nicolas Langer, Maurice Weber ... Ce Zhang
    Tools and Resources

    Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey–Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visual memory deterioration. To obtain a score, a trained clinician inspects a patient’s ROCF drawing and quantifies deviations from the original figure. This manual procedure is time-consuming, slow and scores vary depending on the clinician’s experience, motivation, and tiredness. Here, we leverage novel deep learning architectures to automatize the rating of memory deficits. For this, we collected more than 20k hand-drawn ROCF drawings from patients with various neurological and psychiatric disorders as well as healthy participants. Unbiased ground truth ROCF scores were obtained from crowdsourced human intelligence. This dataset was used to train and evaluate a multihead convolutional neural network. The model performs highly unbiased as it yielded predictions very close to the ground truth and the error was similarly distributed around zero. The neural network outperforms both online raters and clinicians. The scoring system can reliably identify and accurately score individual figure elements in previously unseen ROCF drawings, which facilitates explainability of the AI-scoring system. To ensure generalizability and clinical utility, the model performance was successfully replicated in a large independent prospective validation study that was pre-registered prior to data collection. Our AI-powered scoring system provides healthcare institutions worldwide with a digital tool to assess objectively, reliably, and time-efficiently the performance in the ROCF test from hand-drawn images.

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.