Combining robotic training and inactivation of the healthy hemisphere restores pre-stroke motor patterns in mice

Abstract

Focal cortical stroke often leads to persistent motor deficits, prompting the need for more effective interventions. The efficacy of rehabilitation can be increased by 'plasticity-stimulating' treatments that enhance experience-dependent modifications in spared areas. Transcallosal pathways represent a promising therapeutic target, but their role in post-stroke recovery remains controversial. Here, we demonstrate that the contralesional cortex exerts an enhanced interhemispheric inhibition over the perilesional tissue after focal cortical stroke in mouse forelimb motor cortex. Accordingly, we designed a rehabilitation protocol combining intensive, repeatable exercises on a robotic platform with reversible inactivation of the contralesional cortex. This treatment promoted recovery in general motor tests and in manual dexterity with remarkable restoration of pre-lesion movement patterns, evaluated by kinematic analysis. Recovery was accompanied by a reduction of transcallosal inhibition and 'plasticity brakes' over the perilesional tissue. Our data support the use of combinatorial clinical therapies exploiting robotic devices and modulation of interhemispheric connectivity.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Cristina Spalletti

    Institute of Neuroscience, CNR, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Claudia Alia

    Institute of Neuroscience, CNR, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Stefano Lai

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Alessandro Panarese

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Sara Conti

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Silvestro Micera

    The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4396-8217
  7. Matteo Caleo

    Institute of Neuroscience, CNR, Pisa, Italy
    For correspondence
    caleo@in.cnr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4333-6378

Funding

Fondazione Pisa (158/2011)

  • Matteo Caleo

Regione Toscana

  • Silvestro Micera
  • Matteo Caleo

European Union's Horizon 2020 Research and Innovation Program (720270 (HBP SGA1))

  • Silvestro Micera
  • Matteo Caleo

ERC Advanced Grant 2015 (692943)

  • Matteo Caleo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in compliance with the EU Council Directive 2010/63/EU on the protection of animals used for scientific purposes, and approved by the Italian Ministry of Health, protocol number DGSAF0015924-16/06/2015.

Copyright

© 2017, Spalletti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,438
    views
  • 367
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cristina Spalletti
  2. Claudia Alia
  3. Stefano Lai
  4. Alessandro Panarese
  5. Sara Conti
  6. Silvestro Micera
  7. Matteo Caleo
(2017)
Combining robotic training and inactivation of the healthy hemisphere restores pre-stroke motor patterns in mice
eLife 6:e28662.
https://doi.org/10.7554/eLife.28662

Share this article

https://doi.org/10.7554/eLife.28662

Further reading

    1. Neuroscience
    Donald Iain MacDonald, Monessha Jayabalan ... Alexander Theodore Chesler
    Research Article

    The neuropeptides Substance P and CGRPα have long been thought important for pain sensation. Both peptides and their receptors are expressed at high levels in pain-responsive neurons from the periphery to the brain making them attractive therapeutic targets. However, drugs targeting these pathways individually did not relieve pain in clinical trials. Since Substance P and CGRPα are extensively co-expressed, we hypothesized that their simultaneous inhibition would be required for effective analgesia. We therefore generated Tac1 and Calca double knockout (DKO) mice and assessed their behavior using a wide range of pain-relevant assays. As expected, Substance P and CGRPα peptides were undetectable throughout the nervous system of DKO mice. To our surprise, these animals displayed largely intact responses to mechanical, thermal, chemical, and visceral pain stimuli, as well as itch. Moreover, chronic inflammatory pain and neurogenic inflammation were unaffected by loss of the two peptides. Finally, neuropathic pain evoked by nerve injury or chemotherapy treatment was also preserved in peptide-deficient mice. Thus, our results demonstrate that even in combination, Substance P and CGRPα are not required for the transmission of acute and chronic pain.

    1. Neuroscience
    Sean McCracken, Liam McCoy ... Josh L Morgan
    Research Article

    In albino mice and EphB1 knockout mice, mistargeted retinal ganglion cell axons form dense islands of axon terminals in the dorsal lateral geniculate nuclei (dLGN). The formation of these islands of retinal input depends on developmental patterns of spontaneous retinal activity. We reconstructed the microcircuitry of the activity-dependent islands and found that the boundaries of the island represent a remarkably strong segregation within retinogeniculate connectivity. We conclude that when sets of retinal input are established in the wrong part of the dLGN, the developing circuitry responds by forming a synaptically isolated subcircuit within the otherwise fully connected network. The fact that there is a developmental starting condition that can induce a synaptically segregated microcircuit has important implications for our understanding of the organization of visual circuits and our understanding of the implementation of activity-dependent development.