Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation

  1. Benoit Daubech
  2. Philippe Remigi
  3. Ginaini Doin de Moura
  4. Marta Marchetti
  5. Cécile Pouzet
  6. Marie-Christine Auriac
  7. Chaitanya S Gokhale
  8. Catherine Masson-Boivin  Is a corresponding author
  9. Delphine Capela
  1. Université de Toulouse, France
  2. Massey University, New Zealand
  3. Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, France
  4. Max Planck Institute for Evolutionary Biology, Germany

Abstract

Mutualism is of fundamental importance in ecosystems. Which factors help to keep the relationship mutually beneficial and evolutionarily successful is a central question. We addressed this issue for one of the most significant mutualistic interactions on Earth, which associates plants of the leguminosae family and hundreds of nitrogen (N2)-fixing bacterial species. Here we analyze the spatio-temporal dynamics of fixers and non-fixers along the symbiotic process in the Cupriavidus taiwanensis-Mimosa pudica system. N2-fixing symbionts progressively outcompete isogenic non-fixers within root nodules, where N2-fixation occurs, even when they share the same nodule. Numerical simulations, supported by experimental validation, predict that rare fixers will invade a population dominated by non-fixing bacteria during serial nodulation cycles with a probability that is function of initial inoculum, plant population size and nodulation cycle length. Our findings provide insights into the selective forces and ecological factors that may have driven the spread of the N2-fixation mutualistic trait.

Article and author information

Author details

  1. Benoit Daubech

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Philippe Remigi

    New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9023-3788
  3. Ginaini Doin de Moura

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marta Marchetti

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Cécile Pouzet

    Plateforme d'Imagerie TRI, Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Marie-Christine Auriac

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Chaitanya S Gokhale

    Research Group for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Ploen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5749-3665
  8. Catherine Masson-Boivin

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    For correspondence
    catherine.masson@inra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3506-3808
  9. Delphine Capela

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-12-ADAP-0014-01)

  • Marta Marchetti
  • Catherine Masson-Boivin
  • Delphine Capela

Institut National de la Recherche Agronomique

  • Benoit Daubech

Max Planck society

  • Chaitanya S Gokhale

Agence Nationale de la Recherche (ANR-16-CE20-0011-01)

  • Marta Marchetti
  • Catherine Masson-Boivin
  • Delphine Capela

Agence Nationale de la Recherche (ANR-10-LABX-41)

  • Benoit Daubech
  • Marta Marchetti
  • Cécile Pouzet
  • Marie-Christine Auriac
  • Catherine Masson-Boivin
  • Delphine Capela

Agence Nationale de la Recherche (ANR-11-IDEX-0002-02)

  • Benoit Daubech
  • Marta Marchetti
  • Cécile Pouzet
  • Marie-Christine Auriac
  • Catherine Masson-Boivin
  • Delphine Capela

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Daubech et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,361
    views
  • 407
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benoit Daubech
  2. Philippe Remigi
  3. Ginaini Doin de Moura
  4. Marta Marchetti
  5. Cécile Pouzet
  6. Marie-Christine Auriac
  7. Chaitanya S Gokhale
  8. Catherine Masson-Boivin
  9. Delphine Capela
(2017)
Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation
eLife 6:e28683.
https://doi.org/10.7554/eLife.28683

Share this article

https://doi.org/10.7554/eLife.28683

Further reading

    1. Evolutionary Biology
    Zofia Dubicka, Jarosław Tyszka ... Ulf Bickmeyer
    Research Article

    Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ ‘mineralization of extracellular matrix’ attributed to hyaline rotaliid shells, or ‘mineralization within intracellular vesicles’ attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Philipp H Schiffer, Paschalis Natsidis ... Maximilian J Telford
    Research Article

    The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can provide important comparative data and help to understand the evolution and biology of enigmatic species better. Here we assemble and analyse the genome of the simple, marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilaterian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 chromosome like scaffolds, with repeat content and intron, exon and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signalling pathways are also largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group of the rest of the Bilateria.