Defective synaptic transmission causes disease signs in a mouse model of Juvenile Neuronal Ceroid Lipofuscinosis

  1. Benedikt Grünewald
  2. Maren D Lange
  3. Christian Werner
  4. Aet O'Leary
  5. Andreas Weishaupt
  6. Sandy Popp
  7. David A Pearce
  8. Heinz Wiendl
  9. Andreas Reif
  10. Hans C Pape
  11. Klaus V Toyka
  12. Claudia Sommer
  13. Christian Geis  Is a corresponding author
  1. Jena University Hospital, Germany
  2. University of Münster, Germany
  3. University Hospital Frankfurt, Germany
  4. University Hospital Würzburg, Germany
  5. Sanford Research, United States

Abstract

Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease) caused by mutations in the CLN3 gene is the most prevalent inherited neurodegenerative disease in childhood resulting in widespread central nervous system dysfunction and premature death. The consequences of CLN3 mutation on the progression of the disease, on neuronal transmission, and on central nervous network dysfunction are poorly understood. We used Cln3 knockout (Cln3Δex7/8) mice and found increased anxiety-related behavior and impaired aversive learning as well as markedly affected motor function including disordered coordination. Patch-clamp and loose-patch recordings revealed severely affected inhibitory and excitatory synaptic transmission in amygdala, hippocampus, and in cerebellar networks. Changes in presynaptic release properties may result from dysfunction of CLN3 protein. Furthermore, loss of calbindin, neuropeptide Y, parvalbumin, and GAD65-positive interneurons in central networks collectively support the hypothesis that degeneration of GABAergic interneurons may be the cause of supraspinal GABAergic disinhibition.

Article and author information

Author details

  1. Benedikt Grünewald

    Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Maren D Lange

    Institute of Physiology I, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Werner

    Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Aet O'Leary

    Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6783-4729
  5. Andreas Weishaupt

    Department of Neurology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sandy Popp

    Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. David A Pearce

    Sanford Children´s Health Research Center, Sanford Research, Sioux Falls, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Heinz Wiendl

    Department of Neurology, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Andreas Reif

    Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Hans C Pape

    Institute of Physiology I, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Klaus V Toyka

    Department of Neurology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Claudia Sommer

    Department of Neurology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Christian Geis

    Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
    For correspondence
    christian.geis@med.uni-jena.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9859-581X

Funding

Deutsche Forschungsgemeinschaft (SFB 581 [TP A7])

  • Klaus V Toyka
  • Claudia Sommer

Deutsche Forschungsgemeinschaft (SFB/TR 166 [B2])

  • Christian Geis

Deutsche Forschungsgemeinschaft (SFB/TR 58)

  • Maren D Lange
  • Hans C Pape

German Federal Ministry of Education and Research (Center for Sepsis Control and Care)

  • Christian Geis

IZKF University Hospital Jena

  • Benedikt Grünewald
  • Christian Geis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian Rosenmund, Charité-Universitätsmedizin Berlin, Germany

Ethics

Animal experimentation: All animal experiments were approved by the respective Bavarian and Thuringian state authorities (No. 55.5-2531.01-12/10; 78/05 and 02-44/12). All efforts were made to minimize animal suffering and to reduce the number of animals used. The study was performed in accordance with the ARRIVE guidelines for reporting animal research (Kilkenny et al., 2010).

Version history

  1. Received: May 19, 2017
  2. Accepted: November 13, 2017
  3. Accepted Manuscript published: November 14, 2017 (version 1)
  4. Version of Record published: November 21, 2017 (version 2)

Copyright

© 2017, Grünewald et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,894
    Page views
  • 291
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benedikt Grünewald
  2. Maren D Lange
  3. Christian Werner
  4. Aet O'Leary
  5. Andreas Weishaupt
  6. Sandy Popp
  7. David A Pearce
  8. Heinz Wiendl
  9. Andreas Reif
  10. Hans C Pape
  11. Klaus V Toyka
  12. Claudia Sommer
  13. Christian Geis
(2017)
Defective synaptic transmission causes disease signs in a mouse model of Juvenile Neuronal Ceroid Lipofuscinosis
eLife 6:e28685.
https://doi.org/10.7554/eLife.28685

Share this article

https://doi.org/10.7554/eLife.28685

Further reading

    1. Neuroscience
    Sydney Trask, Nicole C Ferrara
    Insight

    Gradually reducing a source of fear during extinction treatments may weaken negative memories in the long term.

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.