Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity

Abstract

The segregation of the readily releasable pool of synaptic vesicles (RRP) in sub-pools that are differentially poised for exocytosis shapes short-term plasticity. However, the frequency-dependent mobilization of these sub-pools is poorly understood. Using slice recordings and modeling of synaptic activity at cerebellar granule cell to Purkinje cell synapses of mice, we describe two sub-pools in the RRP that can be differentially recruited upon ultrafast changes in the stimulation frequency. We show that at low frequency stimulations, a first sub-pool is gradually silenced, leading to full blockage of synaptic transmission. Conversely, a second pool of synaptic vesicles that cannot be released by a single stimulus is recruited within milliseconds by high-frequency stimulation and support an ultrafast recovery of neurotransmitter release after low-frequency depression. This frequency-dependent mobilization or silencing of sub-pools in the RRP in terminals of granule cells may play a role in the filtering of sensorimotor information in the cerebellum.

Article and author information

Author details

  1. Frédéric Doussau

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    For correspondence
    doussau@inci-cnrs.unistra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3769-1402
  2. Hartmut Schmidt

    Carl-Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
    For correspondence
    Hartmut.Schmidt@medizin.uni-leipzig.de
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin Dorgans

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1724-6384
  4. Antoine M Valera

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    For correspondence
    a.valera@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0230-9752
  5. Bernard Poulain

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Philippe Isope

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0630-5935

Funding

Agence Nationale de la Recherche (ANR-2010-JCJC-1403-1 MicroCer)

  • Philippe Isope

Fondation pour la Recherche Médicale (DEQ20140329514)

  • Philippe Isope

Centre National de la Recherche Scientifique

  • Philippe Isope

Université de Strasbourg

  • Philippe Isope

INTERREG IV Rhin superieur (FEDER # A31)

  • Philippe Isope

Deutsche Forschungsgemeinschaft (SCHM1838)

  • Hartmut Schmidt

Agence Nationale de la Recherche (ANR15-37-CE37-0001-01 CeModR)

  • Philippe Isope

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Ethics

Animal experimentation: All experimental protocols are in accordance with European and French guidelines for animal experimentation and have been approved by the Bas-Rhin veterinary office, Strasbourg, France (authorization number A 67-311 to FD)

Version history

  1. Received: May 30, 2017
  2. Accepted: October 6, 2017
  3. Accepted Manuscript published: October 9, 2017 (version 1)
  4. Version of Record published: October 19, 2017 (version 2)

Copyright

© 2017, Doussau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,079
    views
  • 526
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frédéric Doussau
  2. Hartmut Schmidt
  3. Kevin Dorgans
  4. Antoine M Valera
  5. Bernard Poulain
  6. Philippe Isope
(2017)
Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity
eLife 6:e28935.
https://doi.org/10.7554/eLife.28935

Share this article

https://doi.org/10.7554/eLife.28935

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.