Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity

Abstract

The segregation of the readily releasable pool of synaptic vesicles (RRP) in sub-pools that are differentially poised for exocytosis shapes short-term plasticity. However, the frequency-dependent mobilization of these sub-pools is poorly understood. Using slice recordings and modeling of synaptic activity at cerebellar granule cell to Purkinje cell synapses of mice, we describe two sub-pools in the RRP that can be differentially recruited upon ultrafast changes in the stimulation frequency. We show that at low frequency stimulations, a first sub-pool is gradually silenced, leading to full blockage of synaptic transmission. Conversely, a second pool of synaptic vesicles that cannot be released by a single stimulus is recruited within milliseconds by high-frequency stimulation and support an ultrafast recovery of neurotransmitter release after low-frequency depression. This frequency-dependent mobilization or silencing of sub-pools in the RRP in terminals of granule cells may play a role in the filtering of sensorimotor information in the cerebellum.

Article and author information

Author details

  1. Frédéric Doussau

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    For correspondence
    doussau@inci-cnrs.unistra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3769-1402
  2. Hartmut Schmidt

    Carl-Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
    For correspondence
    Hartmut.Schmidt@medizin.uni-leipzig.de
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin Dorgans

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1724-6384
  4. Antoine M Valera

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    For correspondence
    a.valera@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0230-9752
  5. Bernard Poulain

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Philippe Isope

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0630-5935

Funding

Agence Nationale de la Recherche (ANR-2010-JCJC-1403-1 MicroCer)

  • Philippe Isope

Fondation pour la Recherche Médicale (DEQ20140329514)

  • Philippe Isope

Centre National de la Recherche Scientifique

  • Philippe Isope

Université de Strasbourg

  • Philippe Isope

INTERREG IV Rhin superieur (FEDER # A31)

  • Philippe Isope

Deutsche Forschungsgemeinschaft (SCHM1838)

  • Hartmut Schmidt

Agence Nationale de la Recherche (ANR15-37-CE37-0001-01 CeModR)

  • Philippe Isope

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols are in accordance with European and French guidelines for animal experimentation and have been approved by the Bas-Rhin veterinary office, Strasbourg, France (authorization number A 67-311 to FD)

Copyright

© 2017, Doussau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,148
    views
  • 543
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frédéric Doussau
  2. Hartmut Schmidt
  3. Kevin Dorgans
  4. Antoine M Valera
  5. Bernard Poulain
  6. Philippe Isope
(2017)
Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity
eLife 6:e28935.
https://doi.org/10.7554/eLife.28935

Share this article

https://doi.org/10.7554/eLife.28935

Further reading

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.

    1. Neuroscience
    Markus R Tünte, Stefanie Hoehl ... Ezgi Kayhan
    Research Advance

    Several recent theoretical accounts have posited that interoception, the perception of internal bodily signals, plays a vital role in early human development. Yet, empirical evidence of cardiac interoceptive sensitivity in infants to date has been mixed. Furthermore, existing evidence does not go beyond the perception of cardiac signals and focuses only on the age of 5–7 mo, limiting the generalizability of the results. Here, we used a modified version of the cardiac interoceptive sensitivity paradigm introduced by Maister et al., 2017 in 3-, 9-, and 18-mo-old infants using cross-sectional and longitudinal approaches. Going beyond, we introduce a novel experimental paradigm, namely the iBREATH, to investigate respiratory interoceptive sensitivity in infants. Overall, for cardiac interoceptive sensitivity (total n=135) we find rather stable evidence across ages with infants on average preferring stimuli presented synchronously to their heartbeat. For respiratory interoceptive sensitivity (total n=120) our results show a similar pattern in the first year of life, but not at 18 mo. We did not observe a strong relationship between cardiac and respiratory interoceptive sensitivity at 3 and 9 mo but found some evidence for a relationship at 18 mo. We validated our results using specification curve- and mega-analytic approaches. By examining early cardiac and respiratory interoceptive processing, we provide evidence that infants are sensitive to their interoceptive signals.