Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis

Abstract

Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood flow. In turn, Heg1 stabilizes levels of Krit1 protein and both, Heg1 and Krit1, dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein-mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology.

Article and author information

Author details

  1. Stefan Donat

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Marta Lourenço

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alessio Paolini

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Cécile Otten

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc Renz

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Salim Abdelilah-Seyfried

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    For correspondence
    salim.seyfried@uni-potsdam.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3183-3841

Funding

Deutsche Forschungsgemeinschaft (Excellence Cluster REBIRTH)

  • Stefan Donat

Deutsche Forschungsgemeinschaft (SFB 958)

  • Cécile Otten

Deutsche Forschungsgemeinschaft (Project number SE2016/7-2)

  • Alessio Paolini
  • Cécile Otten
  • Marc Renz

Deutsche Forschungsgemeinschaft (Project number SE2016/10-1)

  • Alessio Paolini
  • Cécile Otten
  • Marc Renz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Deborah Yelon, University of California, San Diego, United States

Ethics

Animal experimentation: Handling of zebrafish was done in compliance with German and Brandenburg State law, carefully monitored by the local authority for animal protection (LUGV, Brandenburg, Germany; Animal protocol#2347-18-2015 ).

Version history

  1. Received: May 23, 2017
  2. Accepted: January 24, 2018
  3. Accepted Manuscript published: January 24, 2018 (version 1)
  4. Version of Record published: February 1, 2018 (version 2)

Copyright

© 2018, Donat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,404
    views
  • 378
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan Donat
  2. Marta Lourenço
  3. Alessio Paolini
  4. Cécile Otten
  5. Marc Renz
  6. Salim Abdelilah-Seyfried
(2018)
Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis
eLife 7:e28939.
https://doi.org/10.7554/eLife.28939

Share this article

https://doi.org/10.7554/eLife.28939

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.