Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis

Abstract

Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood flow. In turn, Heg1 stabilizes levels of Krit1 protein and both, Heg1 and Krit1, dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein-mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology.

Article and author information

Author details

  1. Stefan Donat

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Marta Lourenço

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alessio Paolini

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Cécile Otten

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc Renz

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Salim Abdelilah-Seyfried

    Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
    For correspondence
    salim.seyfried@uni-potsdam.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3183-3841

Funding

Deutsche Forschungsgemeinschaft (Excellence Cluster REBIRTH)

  • Stefan Donat

Deutsche Forschungsgemeinschaft (SFB 958)

  • Cécile Otten

Deutsche Forschungsgemeinschaft (Project number SE2016/7-2)

  • Alessio Paolini
  • Cécile Otten
  • Marc Renz

Deutsche Forschungsgemeinschaft (Project number SE2016/10-1)

  • Alessio Paolini
  • Cécile Otten
  • Marc Renz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Handling of zebrafish was done in compliance with German and Brandenburg State law, carefully monitored by the local authority for animal protection (LUGV, Brandenburg, Germany; Animal protocol#2347-18-2015 ).

Copyright

© 2018, Donat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,457
    views
  • 386
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan Donat
  2. Marta Lourenço
  3. Alessio Paolini
  4. Cécile Otten
  5. Marc Renz
  6. Salim Abdelilah-Seyfried
(2018)
Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis
eLife 7:e28939.
https://doi.org/10.7554/eLife.28939

Share this article

https://doi.org/10.7554/eLife.28939

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.