Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus

  1. Xiang-Shan Yuan
  2. Lu Wang
  3. Hui Dong
  4. Wei-Min Qu
  5. Su-Rong Yang
  6. Yoan Cherasse
  7. Michael Lazarus
  8. Serge N Schiffmann
  9. Alban de Kerchove d'Exaerde
  10. Rui-Xi Li  Is a corresponding author
  11. Zhi-Li Huang  Is a corresponding author
  1. Fudan University, China
  2. University of Tsukuba, Japan
  3. Université Libre de Bruxelles, Belgium

Abstract

Dysfunction of the striatum is frequently associated with sleep disturbances. However, its role in sleep-wake regulation has been paid little attention even though the striatum densely expresses adenosine A2A receptors (A2ARs), which are essential for adenosine-induced sleep. Here we showed that chemogenetic activation of A2AR neurons in specific subregions of the striatum induced a remarkable increase in non-rapid eye movement (NREM) sleep. Anatomical mapping and immunoelectron microscopy revealed that striatal A2AR neurons innervated the external globus pallidus (GPe) in a topographically organized manner and preferentially formed inhibitory synapses with GPe parvalbumin (PV) neurons. Moreover, lesions of GPe PV neurons abolished the sleep-promoting effect of striatal A2AR neurons. In addition, chemogenetic inhibition of striatal A2AR neurons led to a significant decrease of NREM sleep at active period, but not inactive period of mice. These findings reveal a prominent contribution of striatal A2AR neuron/GPe PV neuron circuit in sleep control.

Article and author information

Author details

  1. Xiang-Shan Yuan

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Lu Wang

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Dong

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei-Min Qu

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Su-Rong Yang

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yoan Cherasse

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Lazarus

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3863-4474
  8. Serge N Schiffmann

    Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Alban de Kerchove d'Exaerde

    Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  10. Rui-Xi Li

    Department of Pharmacology, Fudan University, Shanghai, China
    For correspondence
    ruixilee@shmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Zhi-Li Huang

    Department of Pharmacology, Fudan University, Shanghai, China
    For correspondence
    huangzl@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9359-1150

Funding

National Natural Science Foundation of China (81420108015)

  • Zhi-Li Huang

National Natural Science Foundation of China (31671099)

  • Wei-Min Qu

National Natural Science Foundation of China (81271466)

  • Rui-Xi Li

National Natural Science Foundation of China (31571103)

  • Lu Wang

National Natural Science Foundation of China (81571296)

  • Su-Rong Yang

National Basic Research Program of China (2015CB856401)

  • Zhi-Li Huang

Shanghai Committee of Science and Technology (14JC1400900)

  • Zhi-Li Huang

National Natural Science Foundation of China (31471064)

  • Wei-Min Qu

National Natural Science Foundation of China (31530035)

  • Zhi-Li Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were performed in accordance with protocols approved by the Committee on the Ethics of Animal Experiments of Fudan University Shanghai Medical College (permit number: 20110307-049). Every effort was made to minimize the number of animals used and any pain and discomfort experienced by the subjects.

Copyright

© 2017, Yuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,200
    views
  • 649
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiang-Shan Yuan
  2. Lu Wang
  3. Hui Dong
  4. Wei-Min Qu
  5. Su-Rong Yang
  6. Yoan Cherasse
  7. Michael Lazarus
  8. Serge N Schiffmann
  9. Alban de Kerchove d'Exaerde
  10. Rui-Xi Li
  11. Zhi-Li Huang
(2017)
Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus
eLife 6:e29055.
https://doi.org/10.7554/eLife.29055

Share this article

https://doi.org/10.7554/eLife.29055

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.