Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus

  1. Xiang-Shan Yuan
  2. Lu Wang
  3. Hui Dong
  4. Wei-Min Qu
  5. Su-Rong Yang
  6. Yoan Cherasse
  7. Michael Lazarus
  8. Serge N Schiffmann
  9. Alban de Kerchove d'Exaerde
  10. Rui-Xi Li  Is a corresponding author
  11. Zhi-Li Huang  Is a corresponding author
  1. Fudan University, China
  2. University of Tsukuba, Japan
  3. Université Libre de Bruxelles, Belgium

Abstract

Dysfunction of the striatum is frequently associated with sleep disturbances. However, its role in sleep-wake regulation has been paid little attention even though the striatum densely expresses adenosine A2A receptors (A2ARs), which are essential for adenosine-induced sleep. Here we showed that chemogenetic activation of A2AR neurons in specific subregions of the striatum induced a remarkable increase in non-rapid eye movement (NREM) sleep. Anatomical mapping and immunoelectron microscopy revealed that striatal A2AR neurons innervated the external globus pallidus (GPe) in a topographically organized manner and preferentially formed inhibitory synapses with GPe parvalbumin (PV) neurons. Moreover, lesions of GPe PV neurons abolished the sleep-promoting effect of striatal A2AR neurons. In addition, chemogenetic inhibition of striatal A2AR neurons led to a significant decrease of NREM sleep at active period, but not inactive period of mice. These findings reveal a prominent contribution of striatal A2AR neuron/GPe PV neuron circuit in sleep control.

Article and author information

Author details

  1. Xiang-Shan Yuan

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Lu Wang

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Dong

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei-Min Qu

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Su-Rong Yang

    Department of Pharmacology, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yoan Cherasse

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Lazarus

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3863-4474
  8. Serge N Schiffmann

    Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Alban de Kerchove d'Exaerde

    Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  10. Rui-Xi Li

    Department of Pharmacology, Fudan University, Shanghai, China
    For correspondence
    ruixilee@shmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Zhi-Li Huang

    Department of Pharmacology, Fudan University, Shanghai, China
    For correspondence
    huangzl@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9359-1150

Funding

National Natural Science Foundation of China (81420108015)

  • Zhi-Li Huang

National Natural Science Foundation of China (31671099)

  • Wei-Min Qu

National Natural Science Foundation of China (81271466)

  • Rui-Xi Li

National Natural Science Foundation of China (31571103)

  • Lu Wang

National Natural Science Foundation of China (81571296)

  • Su-Rong Yang

National Basic Research Program of China (2015CB856401)

  • Zhi-Li Huang

Shanghai Committee of Science and Technology (14JC1400900)

  • Zhi-Li Huang

National Natural Science Foundation of China (31471064)

  • Wei-Min Qu

National Natural Science Foundation of China (31530035)

  • Zhi-Li Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Louis J Ptáček, University of California, San Francisco, United States

Ethics

Animal experimentation: All animal studies were performed in accordance with protocols approved by the Committee on the Ethics of Animal Experiments of Fudan University Shanghai Medical College (permit number: 20110307-049). Every effort was made to minimize the number of animals used and any pain and discomfort experienced by the subjects.

Version history

  1. Received: May 29, 2017
  2. Accepted: October 11, 2017
  3. Accepted Manuscript published: October 12, 2017 (version 1)
  4. Version of Record published: October 24, 2017 (version 2)

Copyright

© 2017, Yuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,934
    views
  • 613
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiang-Shan Yuan
  2. Lu Wang
  3. Hui Dong
  4. Wei-Min Qu
  5. Su-Rong Yang
  6. Yoan Cherasse
  7. Michael Lazarus
  8. Serge N Schiffmann
  9. Alban de Kerchove d'Exaerde
  10. Rui-Xi Li
  11. Zhi-Li Huang
(2017)
Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus
eLife 6:e29055.
https://doi.org/10.7554/eLife.29055

Share this article

https://doi.org/10.7554/eLife.29055

Further reading

    1. Neuroscience
    Zahid Padamsey, Danai Katsanevaki ... Nathalie L Rochefort
    Research Article

    Mammals have evolved sex-specific adaptations to reduce energy usage in times of food scarcity. These adaptations are well described for peripheral tissue, though much less is known about how the energy-expensive brain adapts to food restriction, and how such adaptations differ across the sexes. Here, we examined how food restriction impacts energy usage and function in the primary visual cortex (V1) of adult male and female mice. Molecular analysis and RNA sequencing in V1 revealed that in males, but not in females, food restriction significantly modulated canonical, energy-regulating pathways, including pathways associated waith AMP-activated protein kinase, peroxisome proliferator-activated receptor alpha, mammalian target of rapamycin, and oxidative phosphorylation. Moreover, we found that in contrast to males, food restriction in females did not significantly affect V1 ATP usage or visual coding precision (assessed by orientation selectivity). Decreased serum leptin is known to be necessary for triggering energy-saving changes in V1 during food restriction. Consistent with this, we found significantly decreased serum leptin in food-restricted males but no significant change in food-restricted females. Collectively, our findings demonstrate that cortical function and energy usage in female mice are more resilient to food restriction than in males. The neocortex, therefore, contributes to sex-specific, energy-saving adaptations in response to food restriction.

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.