A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development

  1. Christie Ciarlo
  2. Charles K Kaufman
  3. Beste Kinikoglu
  4. Jonathan Michael
  5. Song Yang
  6. Christopher D′Amato
  7. Sasja Blokzijl-Franke
  8. Jeroen den Hertog
  9. Thorsten M Schlaeger
  10. Yi Zhou
  11. Eric Liao
  12. Leonard I Zon  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Washington University School of Medicine, United States
  3. Harvard Medical School, United States
  4. Koninklijke Nederlandse Akademie van Wetenschappen (KNAW), University Medical Center Utrecht, Netherlands

Abstract

The neural crest is a dynamic progenitor cell population that arises at the border of neural and non-neural ectoderm. The inductive roles of FGF, Wnt, and BMP at the neural plate border are well established, but the signals required for subsequent neural crest development remain poorly characterized. Here, we conducted a screen in primary zebrafish embryo cultures for chemicals that disrupt neural crest development, as read out by crestin:EGFP expression. We found that the natural product caffeic acid phenethyl ester (CAPE) disrupts neural crest gene expression, migration, and melanocytic differentiation by reducing Sox10 activity. CAPE inhibits FGF-stimulated PI3K/Akt signaling, and neural crest defects in CAPE-treated embryos are suppressed by constitutively active Akt1. Inhibition of Akt activity by constitutively active PTEN similarly decreases crestin expression and Sox10 activity. Our study has identified Akt as a novel intracellular pathway required for neural crest differentiation.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Christie Ciarlo

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2876-2432
  2. Charles K Kaufman

    Department of Medicine, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Beste Kinikoglu

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Jonathan Michael

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Song Yang

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  6. Christopher D′Amato

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  7. Sasja Blokzijl-Franke

    Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW), University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  8. Jeroen den Hertog

    Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW), University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  9. Thorsten M Schlaeger

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  10. Yi Zhou

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  11. Eric Liao

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  12. Leonard I Zon

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    For correspondence
    zon@enders.tch.harvard.edu
    Competing interests
    Leonard I Zon, L.I.Z. is a founder and stock holder of Fate Therapeutics, Marauder Therapeutics, and Scholar Rock..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0860-926X

Funding

National Institutes of Health (F31CA180313)

  • Christie Ciarlo

Melanoma Research Alliance

  • Leonard I Zon

Lawrence Ellison Foundation

  • Leonard I Zon

Howard Hughes Medical Institute

  • Leonard I Zon

National Institutes of Health (R01CA103846)

  • Leonard I Zon

National Institutes of Health (RO3DE024490)

  • Eric Liao

National Institutes of Health (K08AR061071)

  • Charles K Kaufman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish were maintained under standard protocols approved by the Boston Children's Hospital (BCH) Institutional Animal Care and Use Committee (IACUC) (protocol # 14-10-2789R).

Copyright

© 2017, Ciarlo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,283
    views
  • 572
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christie Ciarlo
  2. Charles K Kaufman
  3. Beste Kinikoglu
  4. Jonathan Michael
  5. Song Yang
  6. Christopher D′Amato
  7. Sasja Blokzijl-Franke
  8. Jeroen den Hertog
  9. Thorsten M Schlaeger
  10. Yi Zhou
  11. Eric Liao
  12. Leonard I Zon
(2017)
A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development
eLife 6:e29145.
https://doi.org/10.7554/eLife.29145

Share this article

https://doi.org/10.7554/eLife.29145

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.