A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development

  1. Christie Ciarlo
  2. Charles K Kaufman
  3. Beste Kinikoglu
  4. Jonathan Michael
  5. Song Yang
  6. Christopher D′Amato
  7. Sasja Blokzijl-Franke
  8. Jeroen den Hertog
  9. Thorsten M Schlaeger
  10. Yi Zhou
  11. Eric Liao
  12. Leonard I Zon  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Washington University School of Medicine, United States
  3. Harvard Medical School, United States
  4. Koninklijke Nederlandse Akademie van Wetenschappen (KNAW), University Medical Center Utrecht, Netherlands

Abstract

The neural crest is a dynamic progenitor cell population that arises at the border of neural and non-neural ectoderm. The inductive roles of FGF, Wnt, and BMP at the neural plate border are well established, but the signals required for subsequent neural crest development remain poorly characterized. Here, we conducted a screen in primary zebrafish embryo cultures for chemicals that disrupt neural crest development, as read out by crestin:EGFP expression. We found that the natural product caffeic acid phenethyl ester (CAPE) disrupts neural crest gene expression, migration, and melanocytic differentiation by reducing Sox10 activity. CAPE inhibits FGF-stimulated PI3K/Akt signaling, and neural crest defects in CAPE-treated embryos are suppressed by constitutively active Akt1. Inhibition of Akt activity by constitutively active PTEN similarly decreases crestin expression and Sox10 activity. Our study has identified Akt as a novel intracellular pathway required for neural crest differentiation.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Christie Ciarlo

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2876-2432
  2. Charles K Kaufman

    Department of Medicine, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Beste Kinikoglu

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Jonathan Michael

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Song Yang

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  6. Christopher D′Amato

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  7. Sasja Blokzijl-Franke

    Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW), University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  8. Jeroen den Hertog

    Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW), University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  9. Thorsten M Schlaeger

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  10. Yi Zhou

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  11. Eric Liao

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  12. Leonard I Zon

    Stem Cell Program and Hematology/Oncology, Boston Children's Hospital, Boston, United States
    For correspondence
    zon@enders.tch.harvard.edu
    Competing interests
    Leonard I Zon, L.I.Z. is a founder and stock holder of Fate Therapeutics, Marauder Therapeutics, and Scholar Rock..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0860-926X

Funding

National Institutes of Health (F31CA180313)

  • Christie Ciarlo

Melanoma Research Alliance

  • Leonard I Zon

Lawrence Ellison Foundation

  • Leonard I Zon

Howard Hughes Medical Institute

  • Leonard I Zon

National Institutes of Health (R01CA103846)

  • Leonard I Zon

National Institutes of Health (RO3DE024490)

  • Eric Liao

National Institutes of Health (K08AR061071)

  • Charles K Kaufman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Ethics

Animal experimentation: Zebrafish were maintained under standard protocols approved by the Boston Children's Hospital (BCH) Institutional Animal Care and Use Committee (IACUC) (protocol # 14-10-2789R).

Version history

  1. Received: May 31, 2017
  2. Accepted: August 8, 2017
  3. Accepted Manuscript published: August 23, 2017 (version 1)
  4. Version of Record published: September 14, 2017 (version 2)

Copyright

© 2017, Ciarlo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,114
    views
  • 546
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christie Ciarlo
  2. Charles K Kaufman
  3. Beste Kinikoglu
  4. Jonathan Michael
  5. Song Yang
  6. Christopher D′Amato
  7. Sasja Blokzijl-Franke
  8. Jeroen den Hertog
  9. Thorsten M Schlaeger
  10. Yi Zhou
  11. Eric Liao
  12. Leonard I Zon
(2017)
A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development
eLife 6:e29145.
https://doi.org/10.7554/eLife.29145

Share this article

https://doi.org/10.7554/eLife.29145

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.