Capillary pericytes mediate coronary no-reflow after myocardial ischaemia

Abstract

After cardiac ischaemia, a prolonged decrease of coronary microvascular perfusion often occurs even after flow is restored in an upstream artery. This 'no-reflow' phenomenon worsens patient prognosis. In the brain, after stroke, a similar post-ischaemic 'no-reflow' has been attributed to capillary constriction by contractile pericytes. We now show that occlusion of a rat coronary artery, followed by reperfusion, blocks 40% of cardiac capillaries and halves perfused blood volume within the affected region. Capillary blockages colocalised strongly with pericytes, where capillary diameter was reduced by 37%. The pericyte relaxant adenosine increased capillary diameter by 21% at pericyte somata, decreased capillary block by 25% and increased perfusion volume by 57%. Thus, cardiac pericytes constrict coronary capillaries and reduce microvascular blood flow after ischaemia, despite re-opening of the culprit artery. Cardiac pericytes are therefore a novel therapeutic target in ischaemic heart disease.

Article and author information

Author details

  1. Fergus M O'Farrell

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7378-9175
  2. Svetlana Mastitskaya

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Hammond-Haley

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Felipe Freitas

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Wen Rui Wah

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. David Attwell

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    d.attwell@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3618-0843

Funding

H2020 European Research Council (BrainPower)

  • David Attwell

Rosetrees Trust (A1188)

  • Fergus M O'Farrell
  • David Attwell

H2020 Marie Skłodowska-Curie Actions (654691)

  • Svetlana Mastitskaya

Fondation Leducq (08CVD02)

  • David Attwell

Wellcome (75232)

  • David Attwell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were performed in accordance with European Commission Directive 2010/63/EU (European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes) and the UK government Animals (Scientific Procedures) Act (1986), with project approval from the UCL Animal Welfare and Ethical Review Body.

Copyright

© 2017, O'Farrell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,485
    views
  • 619
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fergus M O'Farrell
  2. Svetlana Mastitskaya
  3. Matthew Hammond-Haley
  4. Felipe Freitas
  5. Wen Rui Wah
  6. David Attwell
(2017)
Capillary pericytes mediate coronary no-reflow after myocardial ischaemia
eLife 6:e29280.
https://doi.org/10.7554/eLife.29280

Share this article

https://doi.org/10.7554/eLife.29280

Further reading

    1. Cell Biology
    Roberto Notario Manzano, Thibault Chaze ... Christel Brou
    Research Article

    Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.

    1. Cell Biology
    Ming Zhang, Guangyi Du ... Wei Chen
    Research Article

    Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.