Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings

  1. Dorottya Cserpán
  2. Domokos Meszéna
  3. Lucia Wittner
  4. Kinga Tóth
  5. István Ulbert
  6. Zoltán Somogyvári
  7. Daniel K Wojcik  Is a corresponding author
  1. Hungarian Academy of Sciences, Hungary
  2. Nencki Institute of Experimental Biology, Poland

Abstract

Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations, however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Dorottya Cserpán

    Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Domokos Meszéna

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucia Wittner

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Kinga Tóth

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. István Ulbert

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Zoltán Somogyvári

    Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel K Wojcik

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
    For correspondence
    d.wojcik@nencki.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0812-9872

Funding

Ministerstwo Nauki i Szkolnictwa Wyższego (Grant 2729/7.PR/2013/2)

  • Daniel K Wojcik

Nemzeti Kutatási, Fejlesztesi és Innovacios Hivatal (Grant K 113147)

  • Zoltán Somogyvári

Nemzeti Agykutatasi Program (Grant KTIA NAP 13-1-2013-0001)

  • István Ulbert

Nemzeti Kutatasi, Fejilesztesi es Innovacios Hivatal (Grant NN 118902)

  • Zoltán Somogyvári

Nemzeti Agykutatasi Program (Grant KTIA-13-NAP-A-IV/1 2 3 4 6)

  • István Ulbert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The in vitro experiment was performed according to the EC Council Directive of November 24, 1986 (86/89/EEC) and all procedures were reviewed and approved by the local ethical committee and the Hungarian Central Government Office (license number: PEI/001/695-9/2015).

Copyright

© 2017, Cserpán et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,082
    views
  • 383
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dorottya Cserpán
  2. Domokos Meszéna
  3. Lucia Wittner
  4. Kinga Tóth
  5. István Ulbert
  6. Zoltán Somogyvári
  7. Daniel K Wojcik
(2017)
Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings
eLife 6:e29384.
https://doi.org/10.7554/eLife.29384

Share this article

https://doi.org/10.7554/eLife.29384

Further reading

    1. Neuroscience
    Erin M Ritchie, Dilan Acar ... Yishi Jin
    Research Article

    The conserved MAP3K12/Dual Leucine Zipper Kinase (DLK) plays versatile roles in neuronal development, axon injury and stress responses, and neurodegeneration, depending on cell-type and cellular contexts. Emerging evidence implicates abnormal DLK signaling in several neurodegenerative diseases. However, our understanding of the DLK-dependent gene network in the central nervous system remains limited. Here, we investigated the roles of DLK in hippocampal glutamatergic neurons using conditional knockout and induced overexpression mice. We found that dorsal CA1 and dentate gyrus neurons are vulnerable to elevated expression of DLK, while CA3 neurons appear less vulnerable. We identified the DLK-dependent translatome that includes conserved molecular signatures and displays cell-type specificity. Increasing DLK signaling is associated with disruptions to microtubules, potentially involving STMN4. Additionally, primary cultured hippocampal neurons expressing different levels of DLK show altered neurite outgrowth, axon specification, and synapse formation. The identification of translational targets of DLK in hippocampal glutamatergic neurons has relevance to our understanding of selective neuron vulnerability under stress and pathological conditions.

    1. Neuroscience
    Tanja Fuchsberger, Imogen Stockwell ... Ole Paulsen
    Research Advance

    The reward and novelty-related neuromodulator dopamine plays an important role in hippocampal long-term memory, which is thought to involve protein-synthesis-dependent synaptic plasticity. However, the direct effects of dopamine on protein synthesis, and the functional implications of newly synthesised proteins for synaptic plasticity, have not yet been investigated. We have previously reported that timing-dependent synaptic depression (t-LTD) can be converted into potentiation by dopamine application during synaptic stimulation (Brzosko et al., 2015) or postsynaptic burst activation (Fuchsberger et al., 2022). Here, we show that dopamine increases protein synthesis in mouse hippocampal CA1 neurons, enabling dopamine-dependent long-term potentiation (DA-LTP), which is mediated via the Ca2+-sensitive adenylate cyclase (AC) subtypes 1/8, cAMP, and cAMP-dependent protein kinase (PKA). We found that neuronal activity is required for the dopamine-induced increase in protein synthesis. Furthermore, dopamine induced a protein-synthesis-dependent increase in the AMPA receptor subunit GluA1, but not GluA2. We found that DA-LTP is absent in GluA1 knock-out mice and that it requires calcium-permeable AMPA receptors. Taken together, our results suggest that dopamine together with neuronal activity controls synthesis of plasticity-related proteins, including GluA1, which enable DA-LTP via a signalling pathway distinct from that of conventional LTP.