1. Neuroscience
Download icon

Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings

  1. Dorottya Cserpán
  2. Domokos Meszéna
  3. Lucia Wittner
  4. Kinga Tóth
  5. István Ulbert
  6. Zoltán Somogyvári
  7. Daniel K Wojcik  Is a corresponding author
  1. Hungarian Academy of Sciences, Hungary
  2. Nencki Institute of Experimental Biology, Poland
Tools and Resources
  • Cited 2
  • Views 1,676
  • Annotations
Cite this article as: eLife 2017;6:e29384 doi: 10.7554/eLife.29384

Abstract

Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations, however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus.

Article and author information

Author details

  1. Dorottya Cserpán

    Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Domokos Meszéna

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucia Wittner

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Kinga Tóth

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. István Ulbert

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Zoltán Somogyvári

    Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel K Wojcik

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
    For correspondence
    d.wojcik@nencki.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0812-9872

Funding

Ministerstwo Nauki i Szkolnictwa Wyższego (Grant 2729/7.PR/2013/2)

  • Daniel K Wojcik

Nemzeti Kutatási, Fejlesztesi és Innovacios Hivatal (Grant K 113147)

  • Zoltán Somogyvári

Nemzeti Agykutatasi Program (Grant KTIA NAP 13-1-2013-0001)

  • István Ulbert

Nemzeti Kutatasi, Fejilesztesi es Innovacios Hivatal (Grant NN 118902)

  • Zoltán Somogyvári

Nemzeti Agykutatasi Program (Grant KTIA-13-NAP-A-IV/1 2 3 4 6)

  • István Ulbert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The in vitro experiment was performed according to the EC Council Directive of November 24, 1986 (86/89/EEC) and all procedures were reviewed and approved by the local ethical committee and the Hungarian Central Government Office (license number: PEI/001/695-9/2015).

Reviewing Editor

  1. Frances K Skinner, Krembil Research Institute, University Health Network, Canada

Publication history

  1. Received: June 7, 2017
  2. Accepted: November 16, 2017
  3. Accepted Manuscript published: November 17, 2017 (version 1)
  4. Version of Record published: December 5, 2017 (version 2)
  5. Version of Record updated: December 5, 2017 (version 3)
  6. Version of Record updated: February 20, 2018 (version 4)

Copyright

© 2017, Cserpán et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,676
    Page views
  • 337
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Cristina Blázquez et al.
    Research Article

    The use of cannabis is rapidly expanding worldwide. Thus, innovative studies aimed to identify, understand and potentially reduce cannabis-evoked harms are warranted. Here, we found that Δ9-tetrahydrocannabinol, the psychoactive ingredient of cannabis, disrupts autophagy selectively in the striatum, a brain area that controls motor behavior, both in vitro and in vivo. Boosting autophagy, either pharmacologically (with temsirolimus) or by dietary intervention (with trehalose), rescued the Δ9-tetrahydrocannabinol-induced impairment of motor coordination in mice. The combination of conditional knockout mouse models and viral vector-mediated autophagy-modulating strategies in vivo showed that cannabinoid CB1 receptors located on neurons belonging to the direct (striatonigral) pathway are required for the motor-impairing activity of Δ9-tetrahydrocannabinol by inhibiting local autophagy. Taken together, these findings identify inhibition of autophagy as an unprecedented mechanistic link between cannabinoids and motor performance, and suggest that activators of autophagy might be considered as potential therapeutic tools to treat specific cannabinoid-evoked behavioral alterations.

    1. Developmental Biology
    2. Neuroscience
    Konstantinos Lagogiannis et al.
    Research Article

    Goal-directed behaviours may be poorly coordinated in young animals but, with age and experience, behaviour progressively adapts to efficiently exploit the animal's ecological niche. How experience impinges on the developing neural circuits of behaviour is an open question. We have conducted a detailed study of the effects of experience on the ontogeny of hunting behaviour in larval zebrafish. We report that larvae with prior experience of live prey consume considerably more prey than naive larvae. This is mainly due to increased capture success and a modest increase in hunt rate. We demonstrate that the initial turn to prey and the final capture manoeuvre of the hunting sequence were jointly modified by experience and that modification of these components predicted capture success. Our findings establish an ethologically relevant paradigm in zebrafish for studying how the brain is shaped by experience to drive the ontogeny of efficient behaviour.