Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings

  1. Dorottya Cserpán
  2. Domokos Meszéna
  3. Lucia Wittner
  4. Kinga Tóth
  5. István Ulbert
  6. Zoltán Somogyvári
  7. Daniel K Wojcik  Is a corresponding author
  1. Hungarian Academy of Sciences, Hungary
  2. Nencki Institute of Experimental Biology, Poland

Abstract

Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations, however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Dorottya Cserpán

    Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Domokos Meszéna

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucia Wittner

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Kinga Tóth

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. István Ulbert

    Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Zoltán Somogyvári

    Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel K Wojcik

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
    For correspondence
    d.wojcik@nencki.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0812-9872

Funding

Ministerstwo Nauki i Szkolnictwa Wyższego (Grant 2729/7.PR/2013/2)

  • Daniel K Wojcik

Nemzeti Kutatási, Fejlesztesi és Innovacios Hivatal (Grant K 113147)

  • Zoltán Somogyvári

Nemzeti Agykutatasi Program (Grant KTIA NAP 13-1-2013-0001)

  • István Ulbert

Nemzeti Kutatasi, Fejilesztesi es Innovacios Hivatal (Grant NN 118902)

  • Zoltán Somogyvári

Nemzeti Agykutatasi Program (Grant KTIA-13-NAP-A-IV/1 2 3 4 6)

  • István Ulbert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The in vitro experiment was performed according to the EC Council Directive of November 24, 1986 (86/89/EEC) and all procedures were reviewed and approved by the local ethical committee and the Hungarian Central Government Office (license number: PEI/001/695-9/2015).

Copyright

© 2017, Cserpán et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,076
    views
  • 383
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dorottya Cserpán
  2. Domokos Meszéna
  3. Lucia Wittner
  4. Kinga Tóth
  5. István Ulbert
  6. Zoltán Somogyvári
  7. Daniel K Wojcik
(2017)
Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings
eLife 6:e29384.
https://doi.org/10.7554/eLife.29384

Share this article

https://doi.org/10.7554/eLife.29384

Further reading

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.