Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the arterial response to low flow

  1. Patrick A Murphy
  2. Vincent L Butty
  3. Paul L Boutz
  4. Shahinoor Begum
  5. Amy L Kimble
  6. Phillip A Sharp
  7. Christopher B Burge
  8. Richard O Hynes  Is a corresponding author
  1. UConn Health, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Low and disturbed blood flow drives the progression of arterial diseases including atherosclerosis and aneurysms. The endothelial response to flow and its interactions with recruited platelets and leukocytes determine disease progression. Here, we report widespread changes in alternative splicing of pre-mRNA in the flow-activated murine arterial endothelium in vivo. Alternative splicing was suppressed by depletion of platelets and macrophages recruited to the arterial endothelium under low and disturbed flow. Binding motifs for the Rbfox-family are enriched adjacent to many of the regulated exons. Endothelial deletion of Rbfox2, the only family member expressed in arterial endothelium, suppresses a subset of the changes in transcription and RNA splicing induced by low flow. Our data reveal an alternative splicing program activated by Rbfox2 in the endothelium on recruitment of platelets and macrophages and demonstrate its relevance in transcriptional responses during flow-driven vascular inflammation.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Patrick A Murphy

    Center for Vascular Biology, UConn Health, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-1042
  2. Vincent L Butty

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul L Boutz

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shahinoor Begum

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Amy L Kimble

    Center for Vascular Biology, UConn Health, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Phillip A Sharp

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher B Burge

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9047-5648
  8. Richard O Hynes

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    rohynes@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7603-8396

Funding

National Heart, Lung, and Blood Institute (F32-HL110484)

  • Patrick A Murphy

National Cancer Institute (P30-CA14051)

  • Vincent L Butty

Howard Hughes Medical Institute (Investigator Award)

  • Richard O Hynes

National Heart, Lung, and Blood Institute (K99/R00-HL125727)

  • Patrick A Murphy

National Heart, Lung, and Blood Institute (PO1-HL66105)

  • Patrick A Murphy

National Institute of General Medical Sciences (R01-GM034277)

  • Phillip A Sharp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Douglas L Black, University of California, Los Angeles, United States

Ethics

Animal experimentation: All mice were housed and handled in accordance with protocols approved by the Massachusetts Institute of Technology Committee on Animal Care (CAC) protocol (0415-033-18). All surgery was performed under isoflurane anesthesia with post-operative analgesia.

Version history

  1. Received: June 12, 2017
  2. Accepted: December 30, 2017
  3. Accepted Manuscript published: January 2, 2018 (version 1)
  4. Version of Record published: January 17, 2018 (version 2)

Copyright

© 2018, Murphy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,780
    views
  • 331
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Patrick A Murphy
  2. Vincent L Butty
  3. Paul L Boutz
  4. Shahinoor Begum
  5. Amy L Kimble
  6. Phillip A Sharp
  7. Christopher B Burge
  8. Richard O Hynes
(2018)
Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the arterial response to low flow
eLife 7:e29494.
https://doi.org/10.7554/eLife.29494

Share this article

https://doi.org/10.7554/eLife.29494

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.