Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the arterial response to low flow

  1. Patrick A Murphy
  2. Vincent L Butty
  3. Paul L Boutz
  4. Shahinoor Begum
  5. Amy L Kimble
  6. Phillip A Sharp
  7. Christopher B Burge
  8. Richard O Hynes  Is a corresponding author
  1. UConn Health, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Low and disturbed blood flow drives the progression of arterial diseases including atherosclerosis and aneurysms. The endothelial response to flow and its interactions with recruited platelets and leukocytes determine disease progression. Here, we report widespread changes in alternative splicing of pre-mRNA in the flow-activated murine arterial endothelium in vivo. Alternative splicing was suppressed by depletion of platelets and macrophages recruited to the arterial endothelium under low and disturbed flow. Binding motifs for the Rbfox-family are enriched adjacent to many of the regulated exons. Endothelial deletion of Rbfox2, the only family member expressed in arterial endothelium, suppresses a subset of the changes in transcription and RNA splicing induced by low flow. Our data reveal an alternative splicing program activated by Rbfox2 in the endothelium on recruitment of platelets and macrophages and demonstrate its relevance in transcriptional responses during flow-driven vascular inflammation.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Patrick A Murphy

    Center for Vascular Biology, UConn Health, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-1042
  2. Vincent L Butty

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul L Boutz

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shahinoor Begum

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Amy L Kimble

    Center for Vascular Biology, UConn Health, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Phillip A Sharp

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher B Burge

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9047-5648
  8. Richard O Hynes

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    rohynes@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7603-8396

Funding

National Heart, Lung, and Blood Institute (F32-HL110484)

  • Patrick A Murphy

National Cancer Institute (P30-CA14051)

  • Vincent L Butty

Howard Hughes Medical Institute (Investigator Award)

  • Richard O Hynes

National Heart, Lung, and Blood Institute (K99/R00-HL125727)

  • Patrick A Murphy

National Heart, Lung, and Blood Institute (PO1-HL66105)

  • Patrick A Murphy

National Institute of General Medical Sciences (R01-GM034277)

  • Phillip A Sharp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were housed and handled in accordance with protocols approved by the Massachusetts Institute of Technology Committee on Animal Care (CAC) protocol (0415-033-18). All surgery was performed under isoflurane anesthesia with post-operative analgesia.

Copyright

© 2018, Murphy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,824
    views
  • 341
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Patrick A Murphy
  2. Vincent L Butty
  3. Paul L Boutz
  4. Shahinoor Begum
  5. Amy L Kimble
  6. Phillip A Sharp
  7. Christopher B Burge
  8. Richard O Hynes
(2018)
Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the arterial response to low flow
eLife 7:e29494.
https://doi.org/10.7554/eLife.29494

Share this article

https://doi.org/10.7554/eLife.29494

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.