Sparse genetic tracing reveals regionally specific functional organization of mammalian nociceptors
Abstract
The human distal limbs have a high spatial acuity for noxious stimuli but a low density of pain-sensing neurites. To elucidate mechanisms underlying regional differences in processing nociception, we sparsely traced non-peptidergic nociceptors across the body using a newly generated MrgprdCreERT2 mouse line. We found that mouse plantar paw skin also innervated by a low density of Mrgprd+ nociceptors, while individual arbors in different locations are comparable in size. Surprisingly, the central arbors of plantar paw and trunk innervating nociceptors have distinct morphologies in the spinal cord. This regional difference is well correlated with a heightened signal transmission for plantar paw circuits, as revealed by both spinal cord slice recordings and behavior assays. Taken together, our results elucidate a novel somatotopic functional organization of the mammalian pain system and suggest that regional central arbor structure could facilitate the 'enlarged representation' of plantar paw regions in the CNS.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (NS083702)
- Wenqin Luo
Burroughs Wellcome Fund (PDEP)
- Ishmail Abdus-Saboor
National Institute of Neurological Disorders and Stroke (NS094224)
- Wenqin Luo
National Institute of Neurological Disorders and Stroke (NS092297)
- William Olson
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures were conducted according to an animal protocol (#804886) approved by Institutional Animal Care and Use Committee (IACUC) of the University of Pennsylvania and National Institutes of Health guidelines.
Copyright
© 2017, Olson et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,657
- views
-
- 627
- downloads
-
- 51
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.