Paradoxical response reversal of top-down modulation in cortical circuits with three interneuron types
Abstract
Pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) show cell type-specific connectivity patterns leading to a canonical microcircuit across cortex. Experiments recording from this circuit often report counterintuitive and seemingly contradictory findings. For example, the response of SST cells in mouse V1 to top-down behavioral modulation can change its sign when the visual input changes, a phenomenon that we call response reversal. We developed a theoretical framework to explain these seemingly contradictory effects as emerging phenomena in circuits with two key features: interactions between multiple neural populations and a nonlinear neuronal input-output relationship. Furthermore, we built a cortical circuit model which reproduces counterintuitive dynamics observed in mouse V1. Our analytical calculations pinpoint connection properties critical to response reversal, and predict additional novel types of complex dynamics that could be tested in future experiments.
Article and author information
Author details
Funding
Office of Naval Research (N00014-17-1-2041)
- Xiao-Jing Wang
Science and Technology Commission of Shanghai Municipality (14JC1404900)
- Xiao-Jing Wang
NIH Blueprint for Neuroscience Research (R01MH062349)
- Xiao-Jing Wang
Science and Technology Commission of Shanghai Municipality (15JC1400104)
- Xiao-Jing Wang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Garcia del Molino et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,060
- views
-
- 568
- downloads
-
- 57
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group. Notably, connectivity to language regions becomes more diverse across individuals with deafness. This does not stem from delayed language acquisition; it is found in deaf native signers, who are exposed to natural language since birth. However, comparing FC diversity between deaf native signers and deaf delayed signers, who were deprived of language in early development, we show that language experience also impacts individual differences, although to a more moderate extent. Overall, our research points out the intricate interplay between brain plasticity and individual differences, shedding light on the diverse ways reorganization manifests among individuals. It joins findings of increased connectivity diversity in blindness and highlights the importance of considering individual differences in personalized rehabilitation for sensory loss.