Neuromodulatory connectivity defines the structure of a behavioral neural network

  1. Feici Diao
  2. Amicia D Elliott
  3. Fengqiu Diao
  4. Sarav Shah
  5. Benjamin H White  Is a corresponding author
  1. National Institute of Mental Health, United States
  2. National Institute of General Medical Sciences, United States

Abstract

Neural networks are typically defined by their synaptic connectivity, yet synaptic wiring diagrams often provide limited insight into network function. This is due partly to the importance of non-synaptic communication by neuromodulators, which can dynamically reconfigure circuit activity to alter its output. Here we systematically map the patterns of neuromodulatory connectivity in a network that governs a developmentally critical behavioral sequence in Drosophila. This sequence, which mediates pupal ecdysis, is governed by the serial release of several key factors, which act both somatically as hormones and within the brain as neuromodulators. By identifying and characterizing the functions of the neuronal targets of these factors, we find that they define hierarchically organized layers of the network controlling the pupal ecdysis sequence: a modular input layer, an intermediate central pattern generating layer, and a motor output layer. Mapping neuromodulatory connections in this system thus defines the functional architecture of the network.

Article and author information

Author details

  1. Feici Diao

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amicia D Elliott

    National Institute of General Medical Sciences, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fengqiu Diao

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarav Shah

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin H White

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    For correspondence
    benjaminwhite@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0612-8075

Funding

National Institute of Mental Health (MH002800-15)

  • Benjamin H White

National Institute of General Medical Sciences (FI2 GM117582)

  • Amicia D Elliott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: June 21, 2017
  2. Accepted: November 21, 2017
  3. Accepted Manuscript published: November 22, 2017 (version 1)
  4. Version of Record published: December 7, 2017 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,972
    views
  • 427
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Feici Diao
  2. Amicia D Elliott
  3. Fengqiu Diao
  4. Sarav Shah
  5. Benjamin H White
(2017)
Neuromodulatory connectivity defines the structure of a behavioral neural network
eLife 6:e29797.
https://doi.org/10.7554/eLife.29797

Share this article

https://doi.org/10.7554/eLife.29797

Further reading

    1. Neuroscience
    Tara Ghafari, Cecilia Mazzetti ... Ole Jensen
    Research Article

    Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.