Defective STIM-mediated store operated Ca2+ entry in hepatocytes leads to metabolic dysfunction in obesity

Abstract

Defective Ca2+ handling is a key mechanism underlying hepatic endoplasmic reticulum (ER) dysfunction in obesity. ER Ca2+ level is in part monitored by the store-operated Ca2+ entry (SOCE) system, an adaptive mechanism that senses ER luminal Ca2+ concentrations through the STIM proteins and facilitates import of the ion from the extracellular space. Here, we show that hepatocytes from obese mice displayed significantly diminished SOCE as a result of impaired STIM1 translocation, which was associated with aberrant STIM1 O-GlycNAcylation. Primary hepatocytes deficient in STIM1 exhibited elevated cellular stress as well as impaired insulin action, increased glucose production and lipid droplet accumulation. Additionally, mice with acute liver deletion of STIM1 displayed systemic glucose intolerance. Conversely, over-expression of STIM1 in obese mice led to increased SOCE, which was sufficient to improve systemic glucose tolerance. These findings demonstrate that SOCE is an important mechanism for healthy hepatic Ca2+ balance and systemic metabolic control.

Article and author information

Author details

  1. Ana Paula Arruda

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benedicte Mengel Pers

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Günes Parlakgul

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ekin Güney

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ted Goh

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Erika Cagampan

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Grace Yankun Lee

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Renata L Goncalves

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Gökhan S Hotamisligil

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    For correspondence
    ghotamis@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2906-1897

Funding

National Institutes of Health (DK52539)

  • Gökhan S Hotamisligil

Pew Charitable Trusts

  • Ana Paula Arruda

Alfred Benzon Foundation

  • Benedicte Mengel Pers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All in vivo studies are approved by the Harvard Medical Area Standing Committee on Animals under the protocols #02396 and #04779.

Copyright

© 2017, Arruda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,605
    views
  • 657
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Paula Arruda
  2. Benedicte Mengel Pers
  3. Günes Parlakgul
  4. Ekin Güney
  5. Ted Goh
  6. Erika Cagampan
  7. Grace Yankun Lee
  8. Renata L Goncalves
  9. Gökhan S Hotamisligil
(2017)
Defective STIM-mediated store operated Ca2+ entry in hepatocytes leads to metabolic dysfunction in obesity
eLife 6:e29968.
https://doi.org/10.7554/eLife.29968

Share this article

https://doi.org/10.7554/eLife.29968

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.