Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain

  1. Sylvie Remaud
  2. Fernando C Ortiz
  3. Marie Perret-Jeanneret
  4. Marie-Stéphane Aigrot
  5. Jean-David Gothié
  6. Csaba Fekete
  7. Zsuzsanna Kvárta-Papp
  8. Balázs Gereben
  9. Dominique Langui
  10. Catherine Lubetzki
  11. Maria Cecilia Angulo
  12. Bernard Zalc
  13. Barbara Demeneix  Is a corresponding author
  1. Muséum d'Histoire Naturelle, Sorbonne Universités, France
  2. INSERM U1128, France
  3. Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, France
  4. Institute of Experimental Medicine, Hungarian Academy of Sciences, Hungary

Abstract

In the adult brain, both neurons and oligodendrocytes can be generated from neural stem cells located within the Sub-Ventricular Zone (SVZ). Physiological signals regulating neuronal versus glial fate are largely unknown. Here we report that a thyroid hormone (T3)-free window, with or without a demyelinating insult, provides a favorable environment for SVZ-derived oligodendrocyte progenitor generation. After demyelination, oligodendrocytes derived from these newly-formed progenitors provide functional remyelination, restoring normal conduction speed. The cellular basis for neuronal versus glial determination in progenitors involves asymmetric partitioning of EGFR and TRα1, expression of which favor glio-and neurogenesis, respectively. Moreover, EGFR+ oligodendrocyte progenitors, but not neuroblasts, express high levels of a T3-inactivating deiodinase, Dio3. Thus, TRα absence with high levels of Dio3 provides double-pronged blockage of T3 action during glial lineage commitment. These findings not only transform our understanding of how T3 orchestrates adult brain lineage decisions, but also provide potential insight into demyelinating disorders.

Article and author information

Author details

  1. Sylvie Remaud

    CNRS UMR 7221, Muséum d'Histoire Naturelle, Sorbonne Universités, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Fernando C Ortiz

    INSERM U1128, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie Perret-Jeanneret

    CNRS UMR 7221, Muséum d'Histoire Naturelle, Sorbonne Universités, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Stéphane Aigrot

    ICM-GH Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-David Gothié

    CNRS UMR 7221, Muséum d'Histoire Naturelle, Sorbonne Universités, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Csaba Fekete

    Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. Zsuzsanna Kvárta-Papp

    Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  8. Balázs Gereben

    Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  9. Dominique Langui

    ICM-GH Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Catherine Lubetzki

    ICM-GH Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Maria Cecilia Angulo

    INSERM U1128, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Bernard Zalc

    ICM-GH Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Barbara Demeneix

    CNRS UMR 7221, Muséum d'Histoire Naturelle, Sorbonne Universités, Paris, France
    For correspondence
    bdem@mnhn.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4544-971X

Funding

Association Française contre les Myopathies

  • Sylvie Remaud
  • Barbara Demeneix

European Commission

  • Barbara Demeneix

Agence Nationale de la Recherche

  • Sylvie Remaud
  • Bernard Zalc
  • Barbara Demeneix

Fondation pour la Recherche Médicale

  • Maria Cecilia Angulo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures involving mice in our study were approved by the French Ministry of Agriculture (authorization number, 01169.02).

Copyright

© 2017, Remaud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,359
    views
  • 504
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sylvie Remaud
  2. Fernando C Ortiz
  3. Marie Perret-Jeanneret
  4. Marie-Stéphane Aigrot
  5. Jean-David Gothié
  6. Csaba Fekete
  7. Zsuzsanna Kvárta-Papp
  8. Balázs Gereben
  9. Dominique Langui
  10. Catherine Lubetzki
  11. Maria Cecilia Angulo
  12. Bernard Zalc
  13. Barbara Demeneix
(2017)
Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain
eLife 6:e29996.
https://doi.org/10.7554/eLife.29996

Share this article

https://doi.org/10.7554/eLife.29996

Further reading

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.