Identification and functional characterization of muscle satellite cells in Drosophila

  1. Dhananjay Chaturvedi
  2. Heinrich Reichert
  3. Rajesh D Gunage  Is a corresponding author
  4. K VijayRaghavan  Is a corresponding author
  1. National Centre for Biological Sciences, Tata Institute of Fundamental Research, India
  2. University of Basel, Switzerland

Abstract

Work on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells observed at the surface and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1 and engage in Notch-Delta dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells.

Article and author information

Author details

  1. Dhananjay Chaturvedi

    Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3957-1236
  2. Heinrich Reichert

    Biocentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  3. Rajesh D Gunage

    Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    rajeshgunage@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5694-4658
  4. K VijayRaghavan

    Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    vijay@ncbs.res.in
    Competing interests
    K VijayRaghavan, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4705-5629

Funding

Department of Science and Technology, Ministry of Science and Technology (JC Bose Fellowship)

  • K VijayRaghavan

Science and Engineering Research Board

  • Dhananjay Chaturvedi

Department of Science and Technology, Ministry of Science and Technology

  • Rajesh D Gunage

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Chaturvedi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,899
    views
  • 949
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dhananjay Chaturvedi
  2. Heinrich Reichert
  3. Rajesh D Gunage
  4. K VijayRaghavan
(2017)
Identification and functional characterization of muscle satellite cells in Drosophila
eLife 6:e30107.
https://doi.org/10.7554/eLife.30107

Share this article

https://doi.org/10.7554/eLife.30107