1. Developmental Biology
Download icon

Identification and functional characterization of muscle satellite cells in Drosophila

  1. Dhananjay Chaturvedi
  2. Heinrich Reichert
  3. Rajesh D Gunage  Is a corresponding author
  4. K VijayRaghavan  Is a corresponding author
  1. National Centre for Biological Sciences, Tata Institute of Fundamental Research, India
  2. University of Basel, Switzerland
Research Article
  • Cited 25
  • Views 4,716
  • Annotations
Cite this article as: eLife 2017;6:e30107 doi: 10.7554/eLife.30107

Abstract

Work on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells observed at the surface and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1 and engage in Notch-Delta dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells.

Article and author information

Author details

  1. Dhananjay Chaturvedi

    Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3957-1236
  2. Heinrich Reichert

    Biocentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  3. Rajesh D Gunage

    Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    rajeshgunage@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5694-4658
  4. K VijayRaghavan

    Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    vijay@ncbs.res.in
    Competing interests
    K VijayRaghavan, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4705-5629

Funding

Department of Science and Technology, Ministry of Science and Technology (JC Bose Fellowship)

  • K VijayRaghavan

Science and Engineering Research Board

  • Dhananjay Chaturvedi

Department of Science and Technology, Ministry of Science and Technology

  • Rajesh D Gunage

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Fiona M Watt, King's College London, United Kingdom

Publication history

  1. Received: July 4, 2017
  2. Accepted: October 24, 2017
  3. Accepted Manuscript published: October 26, 2017 (version 1)
  4. Version of Record published: November 10, 2017 (version 2)
  5. Version of Record updated: June 21, 2018 (version 3)

Copyright

© 2017, Chaturvedi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,716
    Page views
  • 715
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Hourinaz Behesti et al.
    Research Article

    Brain development is regulated by conserved transcriptional programs across species, but little is known about divergent mechanisms that create species-specific characteristics. Among brain regions, human cerebellar histogenesis differs in complexity compared with non-human primates and rodents, making it important to develop methods to generate human cerebellar neurons that closely resemble those in the developing human cerebellum. We report a rapid protocol for the derivation of the human ATOH1 lineage, the precursor of excitatory cerebellar neurons, from human pluripotent stem cells (hPSC). Upon transplantation into juvenile mice, hPSC-derived cerebellar granule cells migrated along glial fibers and integrated into the cerebellar cortex. By Translational Ribosome Affinity Purification-seq, we identified an unexpected temporal shift in the expression of RBFOX3 (NeuN) and NEUROD1, which are classically associated with differentiated neurons, in the human outer external granule layer. This molecular divergence may enable the protracted development of the human cerebellum compared to mice.

    1. Developmental Biology
    2. Evolutionary Biology
    Periklis Paganos et al.
    Research Article

    Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.