An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis

  1. Haoran Zhang
  2. Li Wang
  3. Elaine Yee Man Wong
  4. Sze Lan Tsang
  5. Pin-Xian Xu
  6. Urban Lendahl
  7. Mai Har Sham  Is a corresponding author
  1. The University of Hong Kong, Hong Kong
  2. Mount Sinai School of Medicine, United States
  3. Karolinska Institute, Sweden

Abstract

Craniofacial morphogenesis requires proper development of pharyngeal arches and epibranchial placodes. We show that the epibranchial placodes, in addition to giving rise to cranial sensory neurons, generate a novel lineage-related non-neuronal cell population for mouse pharyngeal arch development. Eya1 is essential for the development of epibranchial placodes and proximal pharyngeal arches. We identify an Eya1-Notch regulatory axis that specifies both the neuronal and non-neuronal commitment of the epibranchial placode, where Notch acts downstream of Eya1 and promotes the non-neuronal cell fate. Notch is regulated by the threonine phosphatase activity of Eya1. Eya1 dephosphorylates p-threonine-2122 of the Notch1 intracellular domain (Notch1 ICD), which increases the stability of Notch1 ICD and maintains Notch signaling activity in the non-neuronal epibranchial placodal cells. Our data unveil a more complex differentiation program in epibranchial placodes and an important role for the Eya1-Notch axis in craniofacial morphogenesis.

Article and author information

Author details

  1. Haoran Zhang

    School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. Li Wang

    School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  3. Elaine Yee Man Wong

    School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  4. Sze Lan Tsang

    School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Pin-Xian Xu

    Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Urban Lendahl

    Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Mai Har Sham

    School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
    For correspondence
    mhsham@hku.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1179-7839

Funding

Research Grants Council, University Grants Committee (RGC GRF 777411)

  • Mai Har Sham

Research Grants Council, University Grants Committee (RGC GRF 17113415)

  • Mai Har Sham

Cancerfonden (SCS X2017-2019,335)

  • Urban Lendahl

Vetenskapsrådet (project grant 2014-2018,RX331)

  • Urban Lendahl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: All mouse experiments were performed in strict accordance with the recommendations and approved by the University of Hong Kong animal research ethics committee (CULATR No. 3329-14 and 3862-15).

Version history

  1. Received: July 3, 2017
  2. Accepted: November 13, 2017
  3. Accepted Manuscript published: November 15, 2017 (version 1)
  4. Version of Record published: November 28, 2017 (version 2)

Copyright

© 2017, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,857
    views
  • 297
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haoran Zhang
  2. Li Wang
  3. Elaine Yee Man Wong
  4. Sze Lan Tsang
  5. Pin-Xian Xu
  6. Urban Lendahl
  7. Mai Har Sham
(2017)
An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis
eLife 6:e30126.
https://doi.org/10.7554/eLife.30126

Share this article

https://doi.org/10.7554/eLife.30126

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.