Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123

  1. Sojin An
  2. Jungmin Yoon
  3. Hanseong Kim
  4. Ji-Joon Song
  5. Uhn-soo Cho  Is a corresponding author
  1. University of Michigan Medical School, United States
  2. Korea Advanced Institute of Science and Technology, Korea (South), Republic of

Abstract

Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at least one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Sojin An

    Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jungmin Yoon

    Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  3. Hanseong Kim

    Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ji-Joon Song

    Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  5. Uhn-soo Cho

    Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    uhnsoo@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6992-2455

Funding

National Institutes of Health (DK111465)

  • Uhn-soo Cho

American Diabetes Association (1-16-JDF-017)

  • Uhn-soo Cho

National Institutes of Health (AG050903)

  • Uhn-soo Cho

March of Dimes Foundation (N019154-00)

  • Uhn-soo Cho

National Research Foundation of Korea (2016R1A2B3006293)

  • Ji-Joon Song

National Research Foundation of Korea (2013R1A1A2055605)

  • Ji-Joon Song

National Research Foundation of Korea (2014K2A3A1000137)

  • Ji-Joon Song

National Research Foundation of Korea (2011-0031955)

  • Ji-Joon Song

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, An et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,502
    views
  • 387
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sojin An
  2. Jungmin Yoon
  3. Hanseong Kim
  4. Ji-Joon Song
  5. Uhn-soo Cho
(2017)
Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123
eLife 6:e30244.
https://doi.org/10.7554/eLife.30244

Share this article

https://doi.org/10.7554/eLife.30244

Further reading

    1. Structural Biology and Molecular Biophysics
    Parveen Goyal, KanagaVijayan Dhanabalan ... Subramanian Ramaswamy
    Research Advance

    N -Acetylneuraminic acid (Neu5Ac) is a negatively charged nine-carbon amino sugar that is often the peripheral sugar in human cell-surface glycoconjugates. Some bacteria scavenge, import, and metabolize Neu5Ac or redeploy it on their cell surfaces for immune evasion. The import of Neu5Ac by many bacteria is mediated by tripartite ATP-independent periplasmic (TRAP) transporters. We have previously reported the structures of SiaQM, a membrane-embedded component of the Haemophilus influenzae TRAP transport system, (Currie et al., 2024). However, none of the published structures contain Neu5Ac bound to SiaQM. This information is critical for defining the transport mechanism and for further structure-activity relationship studies. Here, we report the structures of Fusobacterium nucleatum SiaQM with and without Neu5Ac. Both structures are in an inward (cytoplasmic side) facing conformation. The Neu5Ac-bound structure reveals the interactions of Neu5Ac with the transporter and its relationship with the Na+ binding sites. Two of the Na+-binding sites are similar to those described previously. We identify a third metal-binding site that is further away and buried in the elevator domain. Ser300 and Ser345 interact with the C1-carboxylate group of Neu5Ac. Proteoliposome-based transport assays showed that Ser300-Neu5Ac interaction is critical for transport, whereas Ser345 is dispensable. Neu5Ac primarily interacts with residues in the elevator domain of the protein, thereby supporting the elevator with an operator mechanism. The residues interacting with Neu5Ac are conserved, providing fundamental information required to design inhibitors against this class of proteins.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.