Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons

  1. Daniel J Galtieri
  2. Chad M Estep
  3. David L Wokosin
  4. Stephen Traynelis
  5. D James Surmeier  Is a corresponding author
  1. Northwestern University, United States
  2. Emory University, United States

Abstract

Burst spiking in substantia nigra pars compacta (SNc) dopaminergic neurons is a key signaling event in the circuitry controlling goal-directed behavior. It is widely believed that this spiking mode depends upon an interaction between synaptic activation of N-methyl-D-aspartate receptors (NMDARs) and intrinsic oscillatory mechanisms. However, the role of specific neural networks in burst generation has not been defined. To begin filling this gap, SNc glutamatergic synapses arising from pedunculopotine nucleus (PPN) neurons were characterized using optical and electrophysiological approaches. These synapses were localized exclusively on the soma and proximal dendrites, placing them in a good location to influence spike generation. Indeed, optogenetic stimulation of PPN axons reliably evoked spiking in SNc dopaminergic neurons. Moreover, burst stimulation of PPN axons was faithfully followed, even in the presence of NMDAR antagonists. Thus, PPN-evoked burst spiking of SNc dopaminergic neurons in vivo may not only be extrinsically triggered, but extrinsically patterned as well.

Article and author information

Author details

  1. Daniel J Galtieri

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chad M Estep

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David L Wokosin

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephen Traynelis

    Department of Pharmacology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3750-9615
  5. D James Surmeier

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    For correspondence
    j-surmeier@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6376-5225

Funding

JPB Foundation

  • Daniel J Galtieri
  • Chad M Estep
  • David L Wokosin
  • D James Surmeier

IDP Foundation

  • Daniel J Galtieri
  • Chad M Estep
  • David L Wokosin
  • D James Surmeier

National Institute of Neurological Disorders and Stroke

  • Daniel J Galtieri
  • Chad M Estep
  • David L Wokosin
  • D James Surmeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rui M Costa, Columbia University in the City of New York, United States

Ethics

Animal experimentation: All experiments were performed in strict accordance with the guidelines set by the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to approved Institutional Animal Care and Use Committee protocols (IS00001185) of Northwestern University. All procedures were performed under isoflurane or ketamine/xylazine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: July 11, 2017
  2. Accepted: October 4, 2017
  3. Accepted Manuscript published: October 5, 2017 (version 1)
  4. Version of Record published: October 16, 2017 (version 2)

Copyright

© 2017, Galtieri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,747
    views
  • 583
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel J Galtieri
  2. Chad M Estep
  3. David L Wokosin
  4. Stephen Traynelis
  5. D James Surmeier
(2017)
Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons
eLife 6:e30352.
https://doi.org/10.7554/eLife.30352

Share this article

https://doi.org/10.7554/eLife.30352

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.