Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

  1. Bingshuo Li
  2. Juha P Virtanen
  3. Axel Oeltermann
  4. Cornelius Schwarz
  5. Martin A Giese
  6. Ulf Ziemann
  7. Alia Benali  Is a corresponding author
  1. University of Tübingen, Germany
  2. Max Planck Institute for Biological Cybernetics, Germany

Abstract

Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8-1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6-300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.

Article and author information

Author details

  1. Bingshuo Li

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9024-8354
  2. Juha P Virtanen

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Axel Oeltermann

    Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Cornelius Schwarz

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4725-473X
  5. Martin A Giese

    Section on Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulf Ziemann

    Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Alia Benali

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    For correspondence
    alia.benali@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6047-3713

Funding

Hertie Institute for Clinical Brain Research

  • Cornelius Schwarz
  • Martin A Giese
  • Ulf Ziemann

Centre for Integrative Neuroscience, University of Tübingen

  • Cornelius Schwarz
  • Martin A Giese
  • Ulf Ziemann

Max Planck Institute for Biological Cybernetics

  • Bingshuo Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alexander Rotenberg

Ethics

Animal experimentation: All experimental procedures involving animals were approved by the Tübingen Regional Council (license number: N1/16) and performed in accordance with the German Animal Welfare Act.

Version history

  1. Received: July 19, 2017
  2. Accepted: November 17, 2017
  3. Accepted Manuscript published: November 22, 2017 (version 1)
  4. Accepted Manuscript updated: November 29, 2017 (version 2)
  5. Version of Record published: December 8, 2017 (version 3)

Copyright

© 2017, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,477
    views
  • 563
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bingshuo Li
  2. Juha P Virtanen
  3. Axel Oeltermann
  4. Cornelius Schwarz
  5. Martin A Giese
  6. Ulf Ziemann
  7. Alia Benali
(2017)
Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation
eLife 6:e30552.
https://doi.org/10.7554/eLife.30552

Share this article

https://doi.org/10.7554/eLife.30552

Further reading

    1. Neuroscience
    Alina Tetereva, Narun Pat
    Research Article

    One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36–100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.

    1. Developmental Biology
    2. Neuroscience
    Jonathan AC Menzies, André Maia Chagas ... Claudio R Alonso
    Research Article

    Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene – which we term Movement Modulator (Motor) – as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.