Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

  1. Bingshuo Li
  2. Juha P Virtanen
  3. Axel Oeltermann
  4. Cornelius Schwarz
  5. Martin A Giese
  6. Ulf Ziemann
  7. Alia Benali  Is a corresponding author
  1. University of Tübingen, Germany
  2. Max Planck Institute for Biological Cybernetics, Germany

Abstract

Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8-1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6-300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.

Article and author information

Author details

  1. Bingshuo Li

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9024-8354
  2. Juha P Virtanen

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Axel Oeltermann

    Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Cornelius Schwarz

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4725-473X
  5. Martin A Giese

    Section on Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulf Ziemann

    Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Alia Benali

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    For correspondence
    alia.benali@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6047-3713

Funding

Hertie Institute for Clinical Brain Research

  • Cornelius Schwarz
  • Martin A Giese
  • Ulf Ziemann

Centre for Integrative Neuroscience, University of Tübingen

  • Cornelius Schwarz
  • Martin A Giese
  • Ulf Ziemann

Max Planck Institute for Biological Cybernetics

  • Bingshuo Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures involving animals were approved by the Tübingen Regional Council (license number: N1/16) and performed in accordance with the German Animal Welfare Act.

Copyright

© 2017, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,624
    views
  • 588
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bingshuo Li
  2. Juha P Virtanen
  3. Axel Oeltermann
  4. Cornelius Schwarz
  5. Martin A Giese
  6. Ulf Ziemann
  7. Alia Benali
(2017)
Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation
eLife 6:e30552.
https://doi.org/10.7554/eLife.30552

Share this article

https://doi.org/10.7554/eLife.30552

Further reading

    1. Neuroscience
    Hans Martin Kjer, Mariam Andersson ... Tim B Dyrby
    Research Article

    We used diffusion MRI and x-ray synchrotron imaging on monkey and mice brains to examine the organisation of fibre pathways in white matter across anatomical scales. We compared the structure in the corpus callosum and crossing fibre regions and investigated the differences in cuprizone-induced demyelination in mouse brains versus healthy controls. Our findings revealed common principles of fibre organisation that apply despite the varying patterns observed across species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways. Fasciculi exhibited non-straight paths around obstacles like blood vessels, comparable across the samples of varying fibre complexity and demyelination. Quantifications of fibre orientation distributions were consistent across anatomical length scales and modalities, whereas tissue anisotropy had a more complex relationship, both dependent on the field-of-view. Our study emphasises the need to balance field-of-view and voxel size when characterising white matter features across length scales.

    1. Neuroscience
    Sergio Plaza-Alonso, Nicolas Cano-Astorga ... Lidia Alonso-Nanclares
    Research Article Updated

    The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the microanatomical features of synapses in all layers of the medial EC (MEC) from the human brain. Using this technology, 12,974 synapses were fully 3D reconstructed at the ultrastructural level. The MEC presented a distinct set of synaptic features, differentiating this region from other human cortical areas. Furthermore, ultrastructural synaptic characteristics within the MEC was predominantly similar, although layers I and VI exhibited several synaptic characteristics that were distinct from other layers. The present study constitutes an extensive description of the synaptic characteristics of the neuropil of all layers of the EC, a crucial step to better understand the connectivity of this cortical region, in both health and disease.