Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

  1. Bingshuo Li
  2. Juha P Virtanen
  3. Axel Oeltermann
  4. Cornelius Schwarz
  5. Martin A Giese
  6. Ulf Ziemann
  7. Alia Benali  Is a corresponding author
  1. University of Tübingen, Germany
  2. Max Planck Institute for Biological Cybernetics, Germany

Abstract

Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8-1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6-300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.

Article and author information

Author details

  1. Bingshuo Li

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9024-8354
  2. Juha P Virtanen

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Axel Oeltermann

    Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Cornelius Schwarz

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4725-473X
  5. Martin A Giese

    Section on Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulf Ziemann

    Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Alia Benali

    Systems Neurophysiology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    For correspondence
    alia.benali@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6047-3713

Funding

Hertie Institute for Clinical Brain Research

  • Cornelius Schwarz
  • Martin A Giese
  • Ulf Ziemann

Centre for Integrative Neuroscience, University of Tübingen

  • Cornelius Schwarz
  • Martin A Giese
  • Ulf Ziemann

Max Planck Institute for Biological Cybernetics

  • Bingshuo Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures involving animals were approved by the Tübingen Regional Council (license number: N1/16) and performed in accordance with the German Animal Welfare Act.

Copyright

© 2017, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,597
    views
  • 581
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bingshuo Li
  2. Juha P Virtanen
  3. Axel Oeltermann
  4. Cornelius Schwarz
  5. Martin A Giese
  6. Ulf Ziemann
  7. Alia Benali
(2017)
Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation
eLife 6:e30552.
https://doi.org/10.7554/eLife.30552

Share this article

https://doi.org/10.7554/eLife.30552

Further reading

    1. Neuroscience
    Suelen Pereira, Ivan Tomsic ... Mychael V Lourenco
    Insight

    A dysfunctional signaling pathway in the hippocampus has been linked to chronic pain-related memory impairment in mice.

    1. Neuroscience
    Jill R Turner, Jocelyn Martin
    Insight

    Reversing opioid overdoses in rats using a drug that does not enter the brain prevents the sudden and severe withdrawal symptoms associated with therapeutics that target the central nervous system.