Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair

  1. Juan Carlos Lopez-Baez
  2. Daniel J Simpson
  3. Laura LLeras Forero
  4. Zhiqiang Zeng
  5. Hannah Brunsdon
  6. Angela Salzano
  7. Alessandro Brombin
  8. Cameron Wyatt
  9. Witold Rybski
  10. Leonie F A Huitema
  11. Rodney M Dale
  12. Koichi Kawakami
  13. Christoph Englert
  14. Tamir Chandra
  15. Stefan Schulte-Merker
  16. Nicholas D Hastie  Is a corresponding author
  17. E Elizabeth Patton  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Hubrecht Institute, Netherlands
  3. Loyola University Chicago Quinlan, United States
  4. National Institute of Genetics, Japan
  5. Leibniz Institute for Age Research-Fritz Lipmann Institute, Germany

Abstract

Regenerative therapy for degenerative spine disorders requires the identification of cells that can slow down and possibly reverse degenerative processes. Here, we identify an unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor (WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in sheath cells, and that wt1b+ cells migrate into the wound to form a stopper-like structure, likely to maintain structural integrity. Wt1b+ sheath cells are distinct in expressing cartilage and vacuolar genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+ and entpd5+ cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the site of injury is maintained even into adult stages in developing vertebra, which forms in an untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult intervertebral discs, the identification of novel subpopulations may have important implications for regenerative spine disorder treatments.

Article and author information

Author details

  1. Juan Carlos Lopez-Baez

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel J Simpson

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura LLeras Forero

    KNAW and UMC Utrecht, Hubrecht Institute, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhiqiang Zeng

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Hannah Brunsdon

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Angela Salzano

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Alessandro Brombin

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Cameron Wyatt

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Witold Rybski

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6025-2918
  10. Leonie F A Huitema

    KNAW and UMC Utrecht, Hubrecht Institute, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Rodney M Dale

    Department of Biology, Loyola University Chicago Quinlan, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4255-4741
  12. Koichi Kawakami

    Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9993-1435
  13. Christoph Englert

    Department of Molecular Genetics, Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5931-3189
  14. Tamir Chandra

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Stefan Schulte-Merker

    KNAW and UMC Utrecht, Hubrecht Institute, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3617-8807
  16. Nicholas D Hastie

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Nick.Hastie@igmm.ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  17. E Elizabeth Patton

    MRC Human Genetics Unit, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    e.patton@igmm.ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2570-0834

Funding

Medical Research Council University Unit Award to the University of Edinburgh for the MRC Human Genetics Unit (U127527202)

  • Juan Carlos Lopez-Baez
  • Zhiqiang Zeng
  • Alessandro Brombin
  • Witold Rybski
  • Nicholas D Hastie
  • E Elizabeth Patton

Japan Society for the Promotion of Science (15H02370)

  • Koichi Kawakami

Japan Agency for Medical Research and Development (National BioResource Project)

  • Koichi Kawakami

H2020 European Research Council (ZF-MEL-CHEMBIO - 648489)

  • Hannah Brunsdon
  • Alessandro Brombin
  • E Elizabeth Patton

Melanoma Research Alliance (401181)

  • Alessandro Brombin
  • E Elizabeth Patton

L'Oreal USA (401181)

  • Alessandro Brombin
  • E Elizabeth Patton

Cells in Motion - Cluster of Excellence

  • Stefan Schulte-Merker

Leibniz-Gemeinschaft

  • Christoph Englert

Medical Research Council (Discovery Award MC_PC_15075)

  • Angela Salzano

University Of Edinburgh (Chancellor's Fellowship)

  • Tamir Chandra

Medical Research Council (Doctoral Training Programme in Percision Medicine)

  • Daniel J Simpson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All work presented in this study has been performed in accordance with the UK legal requirements for the protection of animals used for experimental or other scientific research under the Animal (Scientific Procedures) Act 1986. All experiments were approved by the University of Edinburgh Ethics Committee, and performed under the Home Office Project License 70/800 to EEP. Zebrafish welfare and husbandry were closely monitored by the MRC Human Genetics Unit Zebrafish Facility staff.

Copyright

© 2018, Lopez-Baez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,610
    views
  • 288
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Carlos Lopez-Baez
  2. Daniel J Simpson
  3. Laura LLeras Forero
  4. Zhiqiang Zeng
  5. Hannah Brunsdon
  6. Angela Salzano
  7. Alessandro Brombin
  8. Cameron Wyatt
  9. Witold Rybski
  10. Leonie F A Huitema
  11. Rodney M Dale
  12. Koichi Kawakami
  13. Christoph Englert
  14. Tamir Chandra
  15. Stefan Schulte-Merker
  16. Nicholas D Hastie
  17. E Elizabeth Patton
(2018)
Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair
eLife 7:e30657.
https://doi.org/10.7554/eLife.30657

Share this article

https://doi.org/10.7554/eLife.30657

Further reading

    1. Stem Cells and Regenerative Medicine
    Mami Matsuo-Takasaki, Sho Kambayashi ... Yohei Hayashi
    Tools and Resources

    Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.

    1. Stem Cells and Regenerative Medicine
    Wenxin Ma, Lian Zhao ... Wei Li
    Research Article

    Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.