Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis

  1. Kenzo Ivanovitch
  2. Susana Temiño Valbuena
  3. Miguel Torres  Is a corresponding author
  1. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Spain

Abstract

During vertebrate heart development two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development.

Article and author information

Author details

  1. Kenzo Ivanovitch

    Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Susana Temiño Valbuena

    Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Miguel Torres

    Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
    For correspondence
    mtorres@cnic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0906-4767

Funding

Ministerio de Economía y Competitividad (BFU2015-71519-P)

  • Miguel Torres

Instituto de Salud Carlos III (RD16/0011/0019)

  • Miguel Torres

European Molecular Biology Organization (ATL1275-2014)

  • Kenzo Ivanovitch

Human Frontier Science Program (LT000609/2015)

  • Kenzo Ivanovitch

Ministerio de Economía y Competitividad (BFU2015-70193-REDT)

  • Miguel Torres

Ministerio de Economía y Competitividad (SEV-2015-0505)

  • Miguel Torres

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the CNIC Animal Experimentation Ethics Committee, by the Community of Madrid (Ref. PROEX 220/15) and conformed to EU Directive 2010/63EU and Recommendation 2007/526/EC regarding the protection of animals used for experimental and other scientific purposes, enforced in Spanish law under Real Decreto 1201/2005.

Copyright

© 2017, Ivanovitch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,648
    views
  • 781
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenzo Ivanovitch
  2. Susana Temiño Valbuena
  3. Miguel Torres
(2017)
Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis
eLife 6:e30668.
https://doi.org/10.7554/eLife.30668

Share this article

https://doi.org/10.7554/eLife.30668

Further reading

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic domains, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article Updated

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.