Functional limb muscle innervation prior to cholinergic transmitter specification during early metamorphosis in Xenopus

  1. Francois M Lambert  Is a corresponding author
  2. Laura Cardoit
  3. Elric Courty
  4. Marion Bougerol
  5. Muriel Thoby-Brisson
  6. John Simmers
  7. Hervé Tostivint
  8. Didier Le Ray
  1. CNRS Université de Bordeaux, France
  2. CNRS Muséum National d'Histoire Naturelle, France

Abstract

In vertebrates, functional motoneurons are defined as differentiated neurons that are connected to a central premotor network and activate peripheral muscle using acetylcholine. Generally, motoneurons and muscles develop simultaneously during embryogenesis. However, during Xenopus metamorphosis, developing limb motoneurons must reach their target muscles through the already established larval cholinergic axial neuromuscular system. Here, we demonstrate that at metamorphosis onset, spinal neurons retrogradely labeled from the emerging hindlimbs initially express neither choline acetyltransferase nor vesicular acetylcholine transporter. Nevertheless, they are positive for the motoneuronal transcription factor Islet1/2 and exhibit intrinsic and axial locomotor-driven electrophysiological activity. Moreover, the early appendicular motoneurons activate developing limb muscles via nicotinic antagonist-resistant, glutamate antagonist-sensitive, neuromuscular synapses. Coincidently, the hindlimb muscles transiently express glutamate, but not nicotinic receptors. Subsequently, both pre- and postsynaptic neuromuscular partners switch definitively to typical cholinergic transmitter signaling. Thus, our results demonstrate a novel context-dependent re-specification of neurotransmitter phenotype during neuromuscular system development.

Data availability

All data generated or analysed during this study are available via Dryad (doi:10.5061/dryad.9sj250q).

The following data sets were generated

Article and author information

Author details

  1. Francois M Lambert

    INCIA UMR 5287, CNRS Université de Bordeaux, Bordeaux, France
    For correspondence
    francois.lambert@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8655-2652
  2. Laura Cardoit

    INCIA UMR 5287, CNRS Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Elric Courty

    INCIA UMR 5287, CNRS Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marion Bougerol

    ERE UMR 7221, CNRS Muséum National d'Histoire Naturelle, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Muriel Thoby-Brisson

    INCIA UMR 5287, CNRS Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3214-1724
  6. John Simmers

    INCIA UMR 5287, CNRS Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Hervé Tostivint

    ERE UMR 7221, CNRS Muséum National d'Histoire Naturelle, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Didier Le Ray

    INCIA UMR 5287, CNRS Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Centre National de la Recherche Scientifique

  • Didier Le Ray

Muséum National d'Histoire Naturelle (Actions thématiques du Museum)

  • Hervé Tostivint

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: All procedures were carried out in accordance with, and approved by, the local ethics committee (protocols no. 68-019) to H. Tostivint and no. 2016011518042273 APAFIS no. 3612 to DLR)

Version history

  1. Received: July 25, 2017
  2. Accepted: May 6, 2018
  3. Accepted Manuscript published: May 30, 2018 (version 1)
  4. Version of Record published: June 12, 2018 (version 2)

Copyright

© 2018, Lambert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,316
    Page views
  • 196
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francois M Lambert
  2. Laura Cardoit
  3. Elric Courty
  4. Marion Bougerol
  5. Muriel Thoby-Brisson
  6. John Simmers
  7. Hervé Tostivint
  8. Didier Le Ray
(2018)
Functional limb muscle innervation prior to cholinergic transmitter specification during early metamorphosis in Xenopus
eLife 7:e30693.
https://doi.org/10.7554/eLife.30693

Share this article

https://doi.org/10.7554/eLife.30693

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.