Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior

  1. Salvatore Lecca
  2. Frank Julius Meye
  3. Massimo Trusel
  4. Anna Tchenio
  5. Julia Harris
  6. Martin Karl Schwarz
  7. Denis Burdakov
  8. Francois Georges
  9. Manuel Mameli  Is a corresponding author
  1. Institut du Fer à Moulin, Inserm UMR-S 839, France
  2. The University of Lausanne, Switzerland
  3. The Francis Crick Institute, Kings Cross, United Kingdom
  4. University Clinic of Bonn, Germany
  5. Université de Bordeaux, Neurodegeneratives Diseases Institute, France

Abstract

A sudden aversive event produces escape behaviors, an innate response essential for survival in virtually all-animal species. Nuclei including the lateral habenula (LHb), the lateral hypothalamus (LH), and the midbrain are not only reciprocally connected, but also respond to negative events contributing to goal-directed behaviors. However, whether aversion encoding requires these neural circuits to ultimately prompt escape behaviors remains unclear. We observe that aversive stimuli, including foot-shocks, excite LHb neurons and promote escape behaviors in mice. The foot-shock-driven excitation within the LHb requires glutamatergic signaling from the LH, but not from the midbrain. This hypothalamic excitatory projection predominates over LHb neurons monosynaptically innervating aversion-encoding midbrain GABA cells. Finally, the selective chemogenetic silencing of the LH-to-LHb pathway impairs aversion-driven escape behaviors. These findings unveil a habenular neurocircuitry devoted to encode external threats and the consequent escape; a process that, if disrupted, may compromise the animal’s survival.

Article and author information

Author details

  1. Salvatore Lecca

    Institut du Fer à Moulin, Inserm UMR-S 839, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Frank Julius Meye

    Department of Fundamental Neuroscience, The University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Massimo Trusel

    Institut du Fer à Moulin, Inserm UMR-S 839, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Tchenio

    Institut du Fer à Moulin, Inserm UMR-S 839, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Julia Harris

    The Francis Crick Institute, Kings Cross, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Karl Schwarz

    Clinic for epilepsy life and Brain center, University Clinic of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Denis Burdakov

    The Francis Crick Institute, Kings Cross, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Francois Georges

    Université de Bordeaux, Neurodegeneratives Diseases Institute, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Manuel Mameli

    Institut du Fer à Moulin, Inserm UMR-S 839, Paris, France
    For correspondence
    manuel.mameli@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0570-6964

Funding

This work was supported by INSERM Atip-Avenir, the City of Paris, the European Research Council (Starting grant SalienSy 335333) to M.M., the HFSP (Young Investigator Award RGY0076) to D.B.

Reviewing Editor

  1. Olivier Manzoni, Inmed, INSERM, Marseilles, France

Ethics

Animal experimentation: Mice were used in accordance with the guidelines of the Ministry of Agriculture and Forestry for animal handling and the ethic committee Charles Darwin #5 of the University Pierre et Marie Curie. Part of the current study was carried at the Department of Fundamental Neuroscience of the University of Lausanne (Lausanne, Switzerland) according to the regulations of the Cantonal Veterinary Offices of Vaud and Zurich (Switzerland; License VD3171).

Version history

  1. Received: July 24, 2017
  2. Accepted: August 30, 2017
  3. Accepted Manuscript published: September 5, 2017 (version 1)
  4. Version of Record published: September 20, 2017 (version 2)

Copyright

© 2017, Lecca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,166
    Page views
  • 1,084
    Downloads
  • 95
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Salvatore Lecca
  2. Frank Julius Meye
  3. Massimo Trusel
  4. Anna Tchenio
  5. Julia Harris
  6. Martin Karl Schwarz
  7. Denis Burdakov
  8. Francois Georges
  9. Manuel Mameli
(2017)
Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior
eLife 6:e30697.
https://doi.org/10.7554/eLife.30697

Share this article

https://doi.org/10.7554/eLife.30697

Further reading

    1. Medicine
    2. Neuroscience
    Flora Moujaes, Jie Lisa Ji ... Alan Anticevic
    Research Article

    Background:

    Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects.

    Methods:

    We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets.

    Results:

    We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level.

    Conclusions:

    These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry.

    Funding:

    This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016–0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 – 2056) (FXV).

    Clinical trial number:

    NCT03842800

    1. Neuroscience
    Lies Deceuninck, Fabian Kloosterman
    Research Article Updated

    Storing and accessing memories is required to successfully perform day-to-day tasks, for example for engaging in a meaningful conversation. Previous studies in both rodents and primates have correlated hippocampal cellular activity with behavioral expression of memory. A key role has been attributed to awake hippocampal replay – a sequential reactivation of neurons representing a trajectory through space. However, it is unclear if awake replay impacts immediate future behavior, gradually creates and stabilizes long-term memories over a long period of time (hours and longer), or enables the temporary memorization of relevant events at an intermediate time scale (seconds to minutes). In this study, we aimed to address the uncertainty around the timeframe of impact of awake replay by collecting causal evidence from behaving rats. We detected and disrupted sharp wave ripples (SWRs) - signatures of putative replay events - using electrical stimulation of the ventral hippocampal commissure in rats that were trained on three different spatial memory tasks. In each task, rats were required to memorize a new set of locations in each trial or each daily session. Interestingly, the rats performed equally well with or without SWR disruptions. These data suggest that awake SWRs - and potentially replay - does not affect the immediate behavior nor the temporary memorization of relevant events at a short timescale that are required to successfully perform the spatial tasks. Based on these results, we hypothesize that the impact of awake replay on memory and behavior is long-term and cumulative over time.