Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection

  1. Ana-Carolina Oliveira
  2. João Francisco Gomes-Neto
  3. Carlos-Henrique Dantas Barbosa
  4. Alessandra Granato
  5. Bernardo S Reis
  6. Bruno Maia Santos
  7. Rita Fucs
  8. Fábio B Canto
  9. Helder I Nakaya
  10. Alberto Nóbrega
  11. Maria Bellio  Is a corresponding author
  1. Universidade Federal do Rio de Janeiro (UFRJ), Brazil
  2. The Rockefeller University, United States
  3. Universidade Federal Fluminense (UFF), Brazil
  4. Universidade de São Paulo (USP), Brazil

Abstract

MyD88 is the main adaptor molecule for TLR and IL-1R family members. Here, we demonstrated that T-cell intrinsic MyD88 signaling is required for proliferation, protection from apoptosis and expression of activation/memory genes during infection with the intracellular parasite Trypanosoma cruzi, as evidenced by transcriptome and cytometry analyses in mixed bone-marrow (BM) chimeras. The lack of direct IL-18R signaling in T cells, but not of IL-1R, phenocopied the absence of the MyD88 pathway, indicating that IL-18R is a critical MyD88-upstream pathway involved in the establishment of the Th1 response against an in vivo infection, a presently controvert subject. Accordingly, Il18r1-/- mice display lower levels of Th1 cells and are highly susceptible to infection, but can be rescued from mortality by the adoptive transfer of WT CD4+ T cells. Our findings establish the T-cell intrinsic IL-18R/MyD88 pathway as a crucial element for induction of cognate Th1 responses against an important human pathogen.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Ana-Carolina Oliveira

    Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. João Francisco Gomes-Neto

    Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos-Henrique Dantas Barbosa

    Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Alessandra Granato

    Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernardo S Reis

    The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruno Maia Santos

    Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Rita Fucs

    Instituto de Biologia, Universidade Federal Fluminense (UFF), Niteroi, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  8. Fábio B Canto

    Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  9. Helder I Nakaya

    Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  10. Alberto Nóbrega

    Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  11. Maria Bellio

    Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    For correspondence
    mariabellioufrj@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3360-2740

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (402932/2012-9)

  • Maria Bellio

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (103.078/2011 and 110.168/2013)

  • Maria Bellio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were conducted in strict accordance with guidelines of the Animal Care and Use Committee of the Federal University of Rio de Janeiro (Comitê de Ética do Centro de Ciências da Saúde CEUA-CCS/UFRJ). Procedures and animal protocols were approved by CEUA-CCS/UFRJ license n.: IMPPG022. Every effort was made to minimize suffering.

Copyright

© 2017, Oliveira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,596
    views
  • 511
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana-Carolina Oliveira
  2. João Francisco Gomes-Neto
  3. Carlos-Henrique Dantas Barbosa
  4. Alessandra Granato
  5. Bernardo S Reis
  6. Bruno Maia Santos
  7. Rita Fucs
  8. Fábio B Canto
  9. Helder I Nakaya
  10. Alberto Nóbrega
  11. Maria Bellio
(2017)
Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection
eLife 6:e30883.
https://doi.org/10.7554/eLife.30883

Share this article

https://doi.org/10.7554/eLife.30883

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Immunology and Inflammation
    Alexandra a Aybar-Torres, Lennon A Saldarriaga ... Lei Jin
    Research Article

    The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.