The somatically generated portion of the T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor

  1. Philippa Marrack  Is a corresponding author
  2. Sai Harsha Krovi
  3. Daniel Silberman
  4. Janice White
  5. Eleanor Kushnir
  6. Maki Nakayama
  7. James Crooks
  8. Thomas Danhorn
  9. Sonia Leach
  10. Randy Anselment
  11. James Scott-Browne
  12. Laurent Gapin
  13. John Kappler
  1. Howard Hughes Medical Institute, National Jewish Health, United States
  2. University of Colorado School of Medicine, United States
  3. National Jewish Health, United States
  4. La Jolla Institute for Allergy and Immunology, United States

Abstract

Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Philippa Marrack

    Howard Hughes Medical Institute, National Jewish Health, Denver, United States
    For correspondence
    MarrackP@NJHealth.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1883-3687
  2. Sai Harsha Krovi

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Silberman

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Janice White

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eleanor Kushnir

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Maki Nakayama

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James Crooks

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Danhorn

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3861-8602
  9. Sonia Leach

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Randy Anselment

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Scott-Browne

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Laurent Gapin

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. John Kappler

    Howard Hughes Medical Institute, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (AI 18785)

  • Philippa Marrack

National Institutes of Health (AI 092108)

  • Laurent Gapin

National Institutes of Health (AI 103736)

  • Laurent Gapin

Howard Hughes Medical Institute (NA)

  • John Kappler

National Institutes of Health (DK099317)

  • Maki Nakayama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AC-2517) of National Jewish Health. The protocol was approved by the Institutional Animal Care and Use Committee of National Jewish Health. Every effort was made to minimize suffering.

Copyright

© 2017, Marrack et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,934
    views
  • 284
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippa Marrack
  2. Sai Harsha Krovi
  3. Daniel Silberman
  4. Janice White
  5. Eleanor Kushnir
  6. Maki Nakayama
  7. James Crooks
  8. Thomas Danhorn
  9. Sonia Leach
  10. Randy Anselment
  11. James Scott-Browne
  12. Laurent Gapin
  13. John Kappler
(2017)
The somatically generated portion of the T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor
eLife 6:e30918.
https://doi.org/10.7554/eLife.30918

Share this article

https://doi.org/10.7554/eLife.30918

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.