The somatically generated portion of the T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor

  1. Philippa Marrack  Is a corresponding author
  2. Sai Harsha Krovi
  3. Daniel Silberman
  4. Janice White
  5. Eleanor Kushnir
  6. Maki Nakayama
  7. James Crooks
  8. Thomas Danhorn
  9. Sonia Leach
  10. Randy Anselment
  11. James Scott-Browne
  12. Laurent Gapin
  13. John Kappler
  1. Howard Hughes Medical Institute, National Jewish Health, United States
  2. University of Colorado School of Medicine, United States
  3. National Jewish Health, United States
  4. La Jolla Institute for Allergy and Immunology, United States

Abstract

Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Philippa Marrack

    Howard Hughes Medical Institute, National Jewish Health, Denver, United States
    For correspondence
    MarrackP@NJHealth.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1883-3687
  2. Sai Harsha Krovi

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Silberman

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Janice White

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eleanor Kushnir

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Maki Nakayama

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James Crooks

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Danhorn

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3861-8602
  9. Sonia Leach

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Randy Anselment

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Scott-Browne

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Laurent Gapin

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. John Kappler

    Howard Hughes Medical Institute, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (AI 18785)

  • Philippa Marrack

National Institutes of Health (AI 092108)

  • Laurent Gapin

National Institutes of Health (AI 103736)

  • Laurent Gapin

Howard Hughes Medical Institute (NA)

  • John Kappler

National Institutes of Health (DK099317)

  • Maki Nakayama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pamela J Bjorkman, California Institute of Technology, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AC-2517) of National Jewish Health. The protocol was approved by the Institutional Animal Care and Use Committee of National Jewish Health. Every effort was made to minimize suffering.

Version history

  1. Received: August 1, 2017
  2. Accepted: November 16, 2017
  3. Accepted Manuscript published: November 17, 2017 (version 1)
  4. Version of Record published: November 24, 2017 (version 2)

Copyright

© 2017, Marrack et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,827
    views
  • 275
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippa Marrack
  2. Sai Harsha Krovi
  3. Daniel Silberman
  4. Janice White
  5. Eleanor Kushnir
  6. Maki Nakayama
  7. James Crooks
  8. Thomas Danhorn
  9. Sonia Leach
  10. Randy Anselment
  11. James Scott-Browne
  12. Laurent Gapin
  13. John Kappler
(2017)
The somatically generated portion of the T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor
eLife 6:e30918.
https://doi.org/10.7554/eLife.30918

Share this article

https://doi.org/10.7554/eLife.30918

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.