The somatically generated portion of the T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor

  1. Philippa Marrack  Is a corresponding author
  2. Sai Harsha Krovi
  3. Daniel Silberman
  4. Janice White
  5. Eleanor Kushnir
  6. Maki Nakayama
  7. James Crooks
  8. Thomas Danhorn
  9. Sonia Leach
  10. Randy Anselment
  11. James Scott-Browne
  12. Laurent Gapin
  13. John Kappler
  1. Howard Hughes Medical Institute, National Jewish Health, United States
  2. University of Colorado School of Medicine, United States
  3. National Jewish Health, United States
  4. La Jolla Institute for Allergy and Immunology, United States

Abstract

Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Philippa Marrack

    Howard Hughes Medical Institute, National Jewish Health, Denver, United States
    For correspondence
    MarrackP@NJHealth.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1883-3687
  2. Sai Harsha Krovi

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Silberman

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Janice White

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eleanor Kushnir

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Maki Nakayama

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James Crooks

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Danhorn

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3861-8602
  9. Sonia Leach

    Department of Biomedical Research, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Randy Anselment

    Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Scott-Browne

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Laurent Gapin

    Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. John Kappler

    Howard Hughes Medical Institute, National Jewish Health, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (AI 18785)

  • Philippa Marrack

National Institutes of Health (AI 092108)

  • Laurent Gapin

National Institutes of Health (AI 103736)

  • Laurent Gapin

Howard Hughes Medical Institute (NA)

  • John Kappler

National Institutes of Health (DK099317)

  • Maki Nakayama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pamela J Bjorkman, California Institute of Technology, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AC-2517) of National Jewish Health. The protocol was approved by the Institutional Animal Care and Use Committee of National Jewish Health. Every effort was made to minimize suffering.

Version history

  1. Received: August 1, 2017
  2. Accepted: November 16, 2017
  3. Accepted Manuscript published: November 17, 2017 (version 1)
  4. Version of Record published: November 24, 2017 (version 2)

Copyright

© 2017, Marrack et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,866
    views
  • 279
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippa Marrack
  2. Sai Harsha Krovi
  3. Daniel Silberman
  4. Janice White
  5. Eleanor Kushnir
  6. Maki Nakayama
  7. James Crooks
  8. Thomas Danhorn
  9. Sonia Leach
  10. Randy Anselment
  11. James Scott-Browne
  12. Laurent Gapin
  13. John Kappler
(2017)
The somatically generated portion of the T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor
eLife 6:e30918.
https://doi.org/10.7554/eLife.30918

Share this article

https://doi.org/10.7554/eLife.30918

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Joanna C Porter, Jamie Inshaw ... Venizelos Papayannopoulos
    Research Article

    Background:

    Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.

    Methods:

    Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.

    Results:

    We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01–2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).

    Conclusions:

    Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.

    Funding:

    LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).

    Clinical trial number:

    NCT04359654.

    1. Immunology and Inflammation
    Hee Young Kim, Yeon Jun Kang ... Won-Woo Lee
    Research Article

    Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.