The modulation of neural gain facilitates a transition between functional segregation and integration in the brain

  1. James M Shine  Is a corresponding author
  2. Matthew J Aburn
  3. Michael Breakspear
  4. Russell Poldrack  Is a corresponding author
  1. Stanford University, United States
  2. QIMR Berghofer Medical Research Institute, Australia

Abstract

Cognitive function relies on a dynamic, context-sensitive balance between functional integration and segregation in the brain. Previous work has proposed that this balance is mediated by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of large-scale neuronal dynamics. We found that increases in neural gain directed the network through an abrupt dynamical transition, leading to an integrated network topology that was maximal in frontoparietal 'rich club' regions. This gain-mediated transition was also associated with increased topological complexity, as well as increased variability in time-resolved topological structure, further highlighting the potential computational benefits of the gain-mediated network transition. These results support the hypothesis that neural gain modulation has the computational capacity to mediate the balance between integration and segregation in the brain.

Article and author information

Author details

  1. James M Shine

    Department of Psychology, Stanford University, Stanford, United States
    For correspondence
    mac.shine@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1762-5499
  2. Matthew J Aburn

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Breakspear

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Russell Poldrack

    Department of Psychology, Stanford University, Stanford, United States
    For correspondence
    poldrack@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6755-0259

Funding

National Health and Medical Research Council (GNT1072403)

  • James M Shine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Shine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,877
    views
  • 725
    downloads
  • 150
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James M Shine
  2. Matthew J Aburn
  3. Michael Breakspear
  4. Russell Poldrack
(2018)
The modulation of neural gain facilitates a transition between functional segregation and integration in the brain
eLife 7:e31130.
https://doi.org/10.7554/eLife.31130

Share this article

https://doi.org/10.7554/eLife.31130