ERα promotes murine hematopoietic regeneration through the Ire1α-mediated unfolded protein response

  1. Richard H Chapple
  2. Tianyuan Hu
  3. Yu-Jung Tseng
  4. Lu Liu
  5. Ayumi Kitano
  6. Victor Luu
  7. Kevin A Hoegenauer
  8. Takao Iwawaki
  9. Qing Li
  10. Daisuke Nakada  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. University of Michigan, United States
  3. Kanazawa Medical University, Japan

Abstract

Activation of the unfolded protein response (UPR) sustains protein homeostasis (proteostasis) and plays a fundamental role in tissue maintenance and longevity of organisms. Long-range control of UPR activation has been demonstrated in invertebrates, but such mechanisms in mammals remain elusive. Here, we show that the female sex hormone estrogen regulates the UPR in hematopoietic stem cells (HSCs). Estrogen treatment increases the capacity of HSCs to regenerate the hematopoietic system upon transplantation and accelerates regeneration after irradiation. We found that estrogen signals through estrogen receptor α (ERα) expressed in hematopoietic cells to activate the protective Ire1α-Xbp1 branch of the UPR. Further, ERα-mediated activation of the Ire1α-Xbp1 pathway confers HSCs with resistance against proteotoxic stress and promotes regeneration. Our findings reveal a systemic mechanism through which HSC function is augmented for hematopoietic regeneration.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Richard H Chapple

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tianyuan Hu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu-Jung Tseng

    Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lu Liu

    Department of Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ayumi Kitano

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Victor Luu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kevin A Hoegenauer

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Takao Iwawaki

    Department of Life Sciences, Kanazawa Medical University, Kahoku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Qing Li

    Department of Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daisuke Nakada

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    nakada@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6010-7094

Funding

National Cancer Institute (CA193235)

  • Daisuke Nakada

National Heart, Lung, and Blood Institute (HL132392)

  • Qing Li

National Institute of Diabetes and Digestive and Kidney Diseases (DK107413)

  • Daisuke Nakada

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed in AAALAC-accredited, specific-pathogen-free animal care facilities at Baylor College of Medicine (BCM), or University of Michigan (UM) with 12hr light-dark cycle and received standard chow ad libitum. All procedures were approved by the BCM or UM Institutional Animal Care and Use Committees (protocol #AN-5858).

Copyright

© 2018, Chapple et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.31159

Further reading

    1. Stem Cells and Regenerative Medicine
    Sujeethkumar Prithiviraj, Alejandro Garcia Garcia ... Paul E Bourgine
    Research Article

    Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joshua G Medina-Feliciano, Griselle Valentín-Tirado ... José E Garcia-Arraras
    Research Article

    In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.