Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres

  1. Juan Manuel Povedano
  2. Paula Martinez
  3. Rosa Serrano
  4. Águeda Tejera
  5. Gonzalo Gómez-López
  6. Maria Bobadilla
  7. Juana Maria Flores
  8. Fátima Bosch
  9. Maria A Blasco  Is a corresponding author
  1. Spanish National Cancer Centre (CNIO), Spain
  2. F. Hoffmann-La Roche Ltd, Switzerland
  3. Complutense University of Madrid, Spain
  4. Autonomous University of Barcelona, Spain

Abstract

Pulmonary fibrosis is a fatal lung disease characterized by fibrotic foci and inflammatory infiltrates. Short telomeres can impair tissue regeneration and are found both in hereditary and sporadic cases. We show here that telomerase expression using AAV9 vectors shows therapeutic effects in a mouse model of pulmonary fibrosis owing to a low-dose bleomycin insult and short telomeres. AAV9 preferentially targets regenerative alveolar type II cells (ATII). AAV9-Tert-treated mice show improved lung function and lower inflammation and fibrosis at 1-3 weeks after viral treatment, and improvement or disappearance of the fibrosis at 8 weeks after treatment. AAV9-Tert treatment leads to longer telomeres and increased proliferation of ATII cells, as well as lower DNA damage, apoptosis, and senescence. Transcriptome analysis of ATII cells confirms downregulation of fibrosis and inflammation pathways. We provide a proof-of-principle that telomerase activation may represent an effective treatment for pulmonary fibrosis provoked or associated with short telomeres.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Juan Manuel Povedano

    Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
    Competing interests
    No competing interests declared.
  2. Paula Martinez

    Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
    Competing interests
    No competing interests declared.
  3. Rosa Serrano

    Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
    Competing interests
    No competing interests declared.
  4. Águeda Tejera

    Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
    Competing interests
    No competing interests declared.
  5. Gonzalo Gómez-López

    Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
    Competing interests
    No competing interests declared.
  6. Maria Bobadilla

    Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
    Competing interests
    Maria Bobadilla, is an employee for F. Hoffmann-La Roche Ltd, and the author declares no other competing financial interests.
  7. Juana Maria Flores

    Animal Surgery and Medicine Department, Complutense University of Madrid, Madrid, Spain
    Competing interests
    No competing interests declared.
  8. Fátima Bosch

    Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  9. Maria A Blasco

    Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
    For correspondence
    mblasco@cnio.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4211-233X

Funding

Ministerio de Economía y Competitividad (SAF2013-45111-R)

  • Paula Martinez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal procedures were approved by the CNIO-ISCIII Ethics Committee for Research and Animal Welfare (CEIyBA) and conducted in accordance to the recommendations of the Federation of European Laboratory Animal Science Associations (FELASA).

Copyright

© 2018, Povedano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,986
    views
  • 1,351
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Manuel Povedano
  2. Paula Martinez
  3. Rosa Serrano
  4. Águeda Tejera
  5. Gonzalo Gómez-López
  6. Maria Bobadilla
  7. Juana Maria Flores
  8. Fátima Bosch
  9. Maria A Blasco
(2018)
Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres
eLife 7:e31299.
https://doi.org/10.7554/eLife.31299

Share this article

https://doi.org/10.7554/eLife.31299

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.