Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor

  1. Leia C Shuhaibar  Is a corresponding author
  2. Jerid W Robinson
  3. Giulia Vigone
  4. Ninna P Shuhaibar
  5. Jeremy R Egbert
  6. Valentina Baena
  7. Tracy F Uliasz
  8. Deborah Kaback
  9. Siu-Pok Yee
  10. Robert Feil
  11. Melanie C Fisher
  12. Caroline N Dealy
  13. Lincoln R Potter  Is a corresponding author
  14. Laurinda A Jaffe  Is a corresponding author
  1. University of Connecticut Health Center, United States
  2. University of Minnesota, United States
  3. University of Tübingen, Germany

Abstract

Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, we show that bone elongation is increased when NPR2 cannot be dephosphorylated and thus produces more cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP production in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone. Thus FGF signaling lowers cyclic GMP production in the growth plate, which counteracts bone elongation. These results define a new component of the signaling network by which activating mutations in the FGF receptor inhibit bone growth.

Article and author information

Author details

  1. Leia C Shuhaibar

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    For correspondence
    shuhaibar@uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jerid W Robinson

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giulia Vigone

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ninna P Shuhaibar

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeremy R Egbert

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Valentina Baena

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tracy F Uliasz

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Deborah Kaback

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Siu-Pok Yee

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert Feil

    Department of Biochemistry, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Melanie C Fisher

    Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Caroline N Dealy

    Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Lincoln R Potter

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    For correspondence
    potter@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Laurinda A Jaffe

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    For correspondence
    ljaffe@uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2636-5721

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R37HD014939)

  • Laurinda A Jaffe

National Institute of General Medical Sciences (R01GM098309)

  • Lincoln R Potter

National Institute of Diabetes and Digestive and Kidney Diseases (Postdoctoral training grant:T32DK007203)

  • Jerid W Robinson

National Institute of Dental and Craniofacial Research (Postdoctoral training grant:R90DE022526)

  • Ninna P Shuhaibar

Fund for Science (Postdoctoral scholarship (mentor)))

  • Laurinda A Jaffe

Fund for Science (Postdoctoral scholarship (postdoc)))

  • Leia C Shuhaibar

Fund for Science (Research grant)

  • Caroline N Dealy

Fund for Science (Research grant)

  • Lincoln R Potter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted as approved by the animal care committees of the University of Connecticut Health Center (101395-0519) and the University of Minnesota (1507-32769A).

Copyright

© 2017, Shuhaibar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,778
    views
  • 275
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leia C Shuhaibar
  2. Jerid W Robinson
  3. Giulia Vigone
  4. Ninna P Shuhaibar
  5. Jeremy R Egbert
  6. Valentina Baena
  7. Tracy F Uliasz
  8. Deborah Kaback
  9. Siu-Pok Yee
  10. Robert Feil
  11. Melanie C Fisher
  12. Caroline N Dealy
  13. Lincoln R Potter
  14. Laurinda A Jaffe
(2017)
Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor
eLife 6:e31343.
https://doi.org/10.7554/eLife.31343

Share this article

https://doi.org/10.7554/eLife.31343

Further reading

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.