Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor

  1. Leia C Shuhaibar  Is a corresponding author
  2. Jerid W Robinson
  3. Giulia Vigone
  4. Ninna P Shuhaibar
  5. Jeremy R Egbert
  6. Valentina Baena
  7. Tracy F Uliasz
  8. Deborah Kaback
  9. Siu-Pok Yee
  10. Robert Feil
  11. Melanie C Fisher
  12. Caroline N Dealy
  13. Lincoln R Potter  Is a corresponding author
  14. Laurinda A Jaffe  Is a corresponding author
  1. University of Connecticut Health Center, United States
  2. University of Minnesota, United States
  3. University of Tübingen, Germany

Abstract

Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, we show that bone elongation is increased when NPR2 cannot be dephosphorylated and thus produces more cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP production in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone. Thus FGF signaling lowers cyclic GMP production in the growth plate, which counteracts bone elongation. These results define a new component of the signaling network by which activating mutations in the FGF receptor inhibit bone growth.

Article and author information

Author details

  1. Leia C Shuhaibar

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    For correspondence
    shuhaibar@uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jerid W Robinson

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giulia Vigone

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ninna P Shuhaibar

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeremy R Egbert

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Valentina Baena

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tracy F Uliasz

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Deborah Kaback

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Siu-Pok Yee

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert Feil

    Department of Biochemistry, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Melanie C Fisher

    Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Caroline N Dealy

    Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Lincoln R Potter

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    For correspondence
    potter@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Laurinda A Jaffe

    Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
    For correspondence
    ljaffe@uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2636-5721

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R37HD014939)

  • Laurinda A Jaffe

National Institute of General Medical Sciences (R01GM098309)

  • Lincoln R Potter

National Institute of Diabetes and Digestive and Kidney Diseases (Postdoctoral training grant:T32DK007203)

  • Jerid W Robinson

National Institute of Dental and Craniofacial Research (Postdoctoral training grant:R90DE022526)

  • Ninna P Shuhaibar

Fund for Science (Postdoctoral scholarship (mentor)))

  • Laurinda A Jaffe

Fund for Science (Postdoctoral scholarship (postdoc)))

  • Leia C Shuhaibar

Fund for Science (Research grant)

  • Caroline N Dealy

Fund for Science (Research grant)

  • Lincoln R Potter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted as approved by the animal care committees of the University of Connecticut Health Center (101395-0519) and the University of Minnesota (1507-32769A).

Copyright

© 2017, Shuhaibar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,805
    views
  • 276
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leia C Shuhaibar
  2. Jerid W Robinson
  3. Giulia Vigone
  4. Ninna P Shuhaibar
  5. Jeremy R Egbert
  6. Valentina Baena
  7. Tracy F Uliasz
  8. Deborah Kaback
  9. Siu-Pok Yee
  10. Robert Feil
  11. Melanie C Fisher
  12. Caroline N Dealy
  13. Lincoln R Potter
  14. Laurinda A Jaffe
(2017)
Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor
eLife 6:e31343.
https://doi.org/10.7554/eLife.31343

Share this article

https://doi.org/10.7554/eLife.31343

Further reading

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.