1. Neuroscience
Download icon

Persistent activity in a recurrent circuit underlies courtship memory in Drosophila

  1. Xiaoliang Zhao
  2. Daniela Lenek
  3. Ugur Dag
  4. Barry Dickson
  5. Krystyna Keleman  Is a corresponding author
  1. Howard Hughes Medical Institute, United States
  2. Research Institute of Molecular Pathology, Austria
Research Article
  • Cited 3
  • Views 4,050
  • Annotations
Cite this article as: eLife 2018;7:e31425 doi: 10.7554/eLife.31425

Abstract

Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBg), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory.

Article and author information

Author details

  1. Xiaoliang Zhao

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8787-076X
  2. Daniela Lenek

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Ugur Dag

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Barry Dickson

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Krystyna Keleman

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    kelemank@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2044-1981

Funding

Howard Hughes Medical Institute

  • Barry Dickson
  • Krystyna Keleman

Boehringer Ingelheim GmbH-IMP

  • Barry Dickson
  • Krystyna Keleman

Austrian Science Fund (FWF P24499 to KK)

  • Krystyna Keleman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristin Scott, University of California, Berkeley, Berkeley, United States

Publication history

  1. Received: August 22, 2017
  2. Accepted: January 9, 2018
  3. Accepted Manuscript published: January 11, 2018 (version 1)
  4. Accepted Manuscript updated: January 12, 2018 (version 2)
  5. Version of Record published: February 6, 2018 (version 3)

Copyright

© 2018, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,050
    Page views
  • 447
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)