Spatial structure of disordered proteins dictates conductance and selectivity in Nuclear Pore Complex mimics

  1. Adithya N Ananth
  2. Ankur Mishra
  3. Steffen Frey
  4. Arvind Dwarkasing
  5. Roderick Versloot
  6. Erik van der Giessen
  7. Dirk Görlich  Is a corresponding author
  8. Patrick Onck  Is a corresponding author
  9. Cees Dekker  Is a corresponding author
  1. Kavli Institute of Nanoscience, Delft University of Technology, Netherlands
  2. University of Groningen, Netherlands
  3. Max Planck Institute for Biophysical Chemistry, Germany

Abstract

Nuclear pore complexes (NPCs) lined with intrinsically disordered FG-domains act as selective gatekeepers for molecular transport between the nucleus and the cytoplasm in eukaryotic cells. The underlying physical mechanism of the intriguing selectivity is still under debate. Here, we probe the transport of ions and transport receptors through biomimetic NPCs consisting of Nsp1 domains attached to the inner surface of solid-state nanopores. We examine both wildtype FG-domains and hydrophilic SG-mutants. FG-nanopores showed a clear selectivity as transport receptors can translocate across the pore whereas other proteins cannot. SG mutant pores lack such selectivity. To unravel this striking difference, we present coarse-grained molecular dynamics simulations that reveal that FG-pores exhibit a high-density, nonuniform protein distribution, in contrast to a uniform and significantly less-dense protein distribution in the SG-mutant. We conclude that the sequence-dependent density distribution of disordered proteins inside the NPC plays a key role for its conductivity and selective permeability.

Article and author information

Author details

  1. Adithya N Ananth

    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Ankur Mishra

    Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Steffen Frey

    Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Arvind Dwarkasing

    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Roderick Versloot

    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Erik van der Giessen

    Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8369-2254
  7. Dirk Görlich

    Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    dgoerli@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4343-5210
  8. Patrick Onck

    Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
    For correspondence
    p.r.onck@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
  9. Cees Dekker

    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
    For correspondence
    C.Dekker@tudelft.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6273-071X

Funding

Zernike Institute for Advanced Materials, University of Groningen

  • Ankur Mishra

University Medical Center Groningen

  • Ankur Mishra

NanoNextNL (program 637 07A.05)

  • Cees Dekker

FOM and Netherlands Organization for Scientific Research

  • Cees Dekker

ERC Advanced Grant SynDiv (grant number 669598)

  • Cees Dekker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Ananth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,096
    views
  • 455
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adithya N Ananth
  2. Ankur Mishra
  3. Steffen Frey
  4. Arvind Dwarkasing
  5. Roderick Versloot
  6. Erik van der Giessen
  7. Dirk Görlich
  8. Patrick Onck
  9. Cees Dekker
(2018)
Spatial structure of disordered proteins dictates conductance and selectivity in Nuclear Pore Complex mimics
eLife 7:e31510.
https://doi.org/10.7554/eLife.31510

Share this article

https://doi.org/10.7554/eLife.31510

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.