A postsynaptic Pi3K-CII dependent signaling controller for presynaptic homeostatic plasticity

  1. Anna G Hauswirth
  2. Kevin J Ford
  3. Tingting Wang
  4. Richard D Fetter
  5. Amy Tong
  6. Graeme W Davis  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

Presynaptic homeostatic plasticity stabilizes information transfer at synaptic connections in organisms ranging from insect to human. By analogy with principles of engineering and control theory, the molecular implementation of PHP is thought to require postsynaptic signaling modules that encode homeostatic sensors, a set point, and a controller that regulates transsynaptic negative feedback. The molecular basis for these postsynaptic, homeostatic signaling elements remains unknown. Here, an electrophysiology-based screen of the Drosophila kinome and phosphatome defines a postsynaptic signaling platform that includes a required function for PI3K-cII, PI3K-cIII and the small GTPase Rab11 during the rapid and sustained expression of PHP. We present evidence that PI3K-cII localizes to Golgi-derived, clathrin-positive vesicles and is necessary to generate an endosomal pool of PI(3)P that recruits Rab11 to recycling endosomal membranes. A morphologically distinct subdivision of this platform concentrates postsynaptically where we propose it functions as a homeostatic controller for retrograde, trans-synaptic signaling.

Article and author information

Author details

  1. Anna G Hauswirth

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Kevin J Ford

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Tingting Wang

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Richard D Fetter

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Amy Tong

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Graeme W Davis

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    graeme.davis@ucsf.edu
    Competing interests
    Graeme W Davis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1355-8401

Funding

National Institute of Neurological Disorders and Stroke (R35NS097212)

  • Graeme W Davis

National Institute of General Medical Sciences (5T32GM007618)

  • Anna G Hauswirth

National Institute of Neurological Disorders and Stroke (F30NS092211)

  • Anna G Hauswirth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Hauswirth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,952
    views
  • 364
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna G Hauswirth
  2. Kevin J Ford
  3. Tingting Wang
  4. Richard D Fetter
  5. Amy Tong
  6. Graeme W Davis
(2018)
A postsynaptic Pi3K-CII dependent signaling controller for presynaptic homeostatic plasticity
eLife 7:e31535.
https://doi.org/10.7554/eLife.31535

Share this article

https://doi.org/10.7554/eLife.31535